
INTRODUCTION TO GALOIS THEORY
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1. Introduction and History

• The life of Évariste Galois and the historical development of polynomial solvability is

one of the most interesting and dramatic tales in the history of mathematics.

2. Background

Definition 1 (Field Extension). A field E is an extension field of a field F if F ≤ E (F a

subfield of E). A field extension is denoted E : F .

Theorem 1 (Kronecker’s Theorem). Let F be a field and let f(x) be a non-constant poly-

nomial in F [X]. Then ∃ an extension field E of F and an α ∈ E such that f(α) = 0.

Definition 2. If φ is an automorphism of a field E, then a ∈ E is left fixed by φ if φ(a) = a.

The set Eφ = {a ∈ E : φ(a) = a} is the fixed field of φ. Similarly for any collection of

automorphism that fix the same elements in E.

Theorem 2 (Important but Uneventful Facts). It can easily be shown that Eφ is a sub-

field of E and that the set of all automorphisms of a field forms a group under function

composition.

Theorem 3. If E : F is a field extension, the operations

(a, b)→ ab (a ∈ F, b ∈ E)(1)

(b, c)→ b+ c (b, c ∈ E)

define on E the structure of a vector space over F .
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Definition 3 (Degree of E over F). The degree [E:F] of a field extension E : F is the di-

mension of E considered as a vector space over F .

Example Q(
√

2) : Q has degree 2.

Definition 4 (Splitting Field). Let E be an extension field of F and let f(x) ∈ F [x]. We

say f(x) splits in E, or E is the splitting field of f(x) over F , if f(x) can be factored into a

product of linear factors in E[x], but no proper subfield of E contains all the roots of f(x).

Example Recall the Fundamental Theorem of Algebra, which can now be phrased as

every non-constant polynomial with complex coefficients splits in C[x].

Definition 5 (Group of E over F, Galois Group). The group of all automorphisms of E

leaving F fixed, or the group of E over F , shall be denoted G(E/F ), specifically G(E/F )

is the Galois Group of E over F .

Theorem 4. Let E be a field and F ≤ E. Then G(E/F ) is a subgroup of the set of

automorphisms of E. Furthermore, F ≤ EG(E/F ).

Definition 6 (Intermediate Field). EG(E/F ) above is an intermediate field of E : F .

Definition 7 (Normal Extension). K is a normal extension of F if K is a finite extension

of F such that F is the fixed field of G(K/F ).

Theorem 5 (Herstein 5.t). Let K be a normal extension of F and let H be a subgroup of

G(K/F ); let KH be the fixed field of H. Then:

1. [K : KH ] = |H|.

2. H = G(K/KH).

Corollary 1 (Special Case). When H = G(K/F ) then [K : F ] = |G(K/F )|.

Theorem 6 (Herstein 5.u). K is a normal extension of F iff K is the splitting field of some

polynomial over F .
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3. Main Theorem of Galois Theory

The following theorem states that there is a one-to-one correspondence between subgroups

of the Galois group and the intermediate fields, among other things.

Main Theorem (Fundamental Theorem of Galois Theory). Let K be a finite normal ex-

tension of the field F , that is either finite or has characteristic 0, and with Galois group

G(K/F ). For any field E, such that F ≤ E ≤ K, let ψ(E) be the subgroup of G(K/F )

leaving E fixed. Then ψ is a one-to-one map of the set of all such intermediate fields onto

the set of all subgroups of G(K/F ) with the following properties:

1. ψ(E) = G(K/E). (ψ : K → G(K/F ))

2. E = KG(K/E) = Kψ(E).

3. For H ≤ G(K/F ), ψ(EH) = H.

4. [K : E] = |ψ(E)| and [E : F ] = [G(K/F ) : ψ(E)], the index for groups.

5. E is a normal extension of F iff ψ(E) is a normal subgroup of G(K/F ). When

ψ(E) �G(K/F ), then G(E/F ) ' G(K/F )/G(K/E).

6. The lattice of subgroups of G(K/F ) is the inverted lattice of intermediate fields of K

over F .

Proof. Property 1 follows directly from the definition of ψ in the statement. Since K is

the splitting field of f(x) ∈ F , by Herstein 5.u K is a normal extension of E and by the

definition of normality E is the fixed field of G(K/E), or E = KG(K/E); proving property

2.

Property 3 follows from directly from Herstein 5.t. Furthermore any subgroup of G(K/F )

is of the form H = G(K/KH), so ψ maps the set of all subfields of K containing F onto

the set of all subgroups of G(K/F ). ψ is also one-to-one because, if G(K/E1) = G(K/E2)

then by property 2, E1 = KG(K/E1) = KG(K/E2) = E2.
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Since K s a normal extension of E, using Herstein 5.t, [K : E] = |G(K/E)|, but then

|G(K/F )| = [K : F ] = [K : E][E : F ] = |G(K/E)|[E : F ] and finally:

[E : F ] =
|G(K/F )|
|G(K/E)|

= [G(K/F ) : G(K/E)] (index for groups).

This concludes property 4.

Property 5 shows that the two uses of the word normal correspond and the first statement

is proven by pushing through the two definitions of normal (one for groups and the other

for field extensions) and employing a few other facts. The isomorphism results from the

automorphisms of G(E/F ) inducing automorphisms of G(K/F ) and then showing the kernel

of a map λ : G(K/F ) → G(E/F ) is G(K/E). Combining these facts λ is onto and with

the fundamental isomorphism theorem G(E/F ) ' G(K/F )/G(K/E). (more details will be

provided if desired)

Property 6 is follows from the correspondence, ψ, that relates the subgroups of the

Galois group to the intermediate fields. Easily one can see that the lattice structures must

be symmetric, but the inversion is not immediately clear. Consider subgroups of the Galois

group, as the order of the subgroups increase there are going to be fewer elements of K fixed

by all of the automorphisms in the subgroup, thus the relation is inversely proportional. By

definition the identity map in G(K/F ) fixes the entire field K, but it’s also the smallest

subgroup of G(K/F ). On the other extreme, F is the smallest subfield of K that contains

F and by definition of the Galois group G(K/F ) is the group of automorphisms of K that

fix F . Naturally everything in between will fall into place.

Notes on the Fundamental Theorem

• Often it is much easier to determine the lattice of subgroups that the lattice of intermediate

fields.

• The importance of the fundamental theorem is its power as a tool, allowing the application

of group theory to more complex realms.

Example of Galois Theory and Polynomials[7]

• Consider the polynomial f(x) = x4 − 4x2 − 5 = 0.
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• The factors are (x2 + 1) and (x2 − 5), therefore its roots are ±i and ±
√

5.

• Now create the field extension L : Q such that L = Q(i,
√

5).

• There are only 4 automorphisms of L that fix Q, let us call them I,R, S, T . We now there

are 4 because a basis for the extension is {1, i,
√

5, i
√

5}, thus [L : Q] = 4 which is equal to

the order of the Galois group by the fundamental theorem.

• The automorphism I is the identity map, R sends i to −i, S sends
√

5 to −
√

5, and T is

the composite of R and S. Clearly this is a group and furthermore each element is its own

inverse.

• The subgroups of G(L/Q) are I, {I,R}, {I, S}, {I, T}, and {I,R, S, T}.

• By the fundamental theorem, the corresponding subfields of L are: L,Q(
√

5),Q(i),Q(i
√

5),

and Q.

4. Insolvability of the Quintic

Definition 8 (Solvable Group). A group G is solvable iff G has a series of subgroups

{e} = H0 ⊂ H1 ⊂ · · · ⊂ Hk = G

where, for each 0 ≤ i < k, Hi �Hi+1 and Hi+1/Hi is abelian.

Theorem 7 (Facts about Solvable groups). Let G be a group, H a subgroup of G and N a

normal subgroup of G.

1. If G is solvable then H is solvable.

2. If G is solvable then G/N is solvable.

3. If N and G/N are solvable then G is solvable.

Theorem 8 (An < Sn). The alternating group, An, is a subgroup of the symmetric group,

Sn.

Theorem 9 (Sn is not solvable). The symmetric group Sn is not a solvable group ∀ n > 4.

Proof. • Note that the alternating group has order n!/2, and for all n > 4, An is simple.

• A simple group is solvable iff it is a cyclic group of prime order (Stewart, thrm 13.3)



6 JASON PRESZLER

• Clearly n!/2 is not prime if n > 4.

• Therefore An is insolvable and by the first fact of solvable groups, Sn can’t be solvable.

Theorem 10 (Solvable By Radicals Implies A Solvable Group). Let F be a field of char-

acteristic zero and let f(x) ∈ F [x]. Suppose that f(x) splits in F (a1, . . . , at) where an1
1 ∈ F

and anii ∈ F (a1, . . . , at) for 2 ≤ i ≤ t. Let E be the splitting field for f(x) over F in

F (a1, . . . , at). Then G(E/F ) is solvable.

Proof. Page 565 of Gallian

Theorem 11 (Lemma for the quintic). Let p be a prime and f an irreducible polynomial

of degree p over Q. Suppose that f has precisely 2 non-real zeros in C, then the Galois group

of f over Q is Sp.

Proof. • By the fundamental theorem of algebra, C contains the splitting field for f .

• The Galois group is a permutation of the zeros of f , as seen in the above example.

Therefore the Galois group is a subgroup of Sp.

•When constructing the splitting field, E, of f , we first adjoin an element of degree p. Such

an element exists since f(a) = 0 implies that a is algebraic over Q and since f is irreducible,

f is the minimal polynomial for a over Q.

• Note [Q(a) : Q] = p (Gallian, ex. 2, p. 361 for more info). Therefore p divides [E : Q] and

by property 4 of the fundamental theorem, the Galois group is divisible by p.

• By Cauchy’s Theorem (Gallian, 24.3 corollary) the Galois group then contains an element

of order p, which implies that ∃ a p-cycle in the Galois group.

• Since f has two non-real zeros and complex conjugation is a valid automorphism in the

Galois group, we know that the Galois group contains a two-cycle.

• Since the Galois group contains a p-cycle and a 2-cycle, and is a subgroup of Sp it must

be isomorphic to Sp since Sp is the only such subgroup with these properties. (This is a

theorem in most books but Gallian leaves it as exercise 25.25)
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Corollary 2 (Special Case). The polynomial f(t) = t5 − 6t + 3 over Q is not solvable by

radicals.

Proof. • By Eisenstein’s Criterion, f(t) is irreducible over Q.

• By any number of methods it can be shown that f(t) has three real zeros and 2 non-real

zeros, thus f(t) is not solvable by radicals and our goal has been achieved!

Final Note

• “Of course this is not the end of the story. There are more ways of killing a quintic than

choking it with radicals.” –Ian Stewart ([7], p. 135)

5. Conclusions and Other Uses of Galois Theory

• There are other methods for finding the roots of a polynomial. The only practical

one is numerical analysis, which is easier than Galois Theory and solving by radicals when

possible, but by no means as elegant.

• Galois theory was originally phrased in terms of polynomial solvability, which is way the

quintic is its classical example. However, the relationship between groups and fields that it

provides a tool for is of the greatest importance in modern algebra.

• Galois theory can be used to solve many other problems such as (this is not an exhaustive

list):

1. Geometric constructions (squaring the circle, trisecting the angle, etc.)

2. Proving numbers are transcendental (π, e).

3. Cyclotomic extensions

•Galois theory has also developed into several branches, including differential Galois Theory,

constructive Galois theory, categorical Galois theory, probabilistic Galois theory, and inverse

Galois theory. (This list is also not exhaustive)

• It is not uncommon for large mathematics programs to have an entire semester long class

on Galois theory for undergrads and most graduate schools have one or two semesters of

Galois theory.
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