
Group Representations: Definition: If there exists a set T of linear operators T (Gi) in a
vector space L which correspond to the elements Gi of a group G such that

T (Ga)T (Gb) = T (GaGb)

then this set of operators is said to form a representation of the group G in the space L.
Note: These representations can be of arbitrary dimension. We will always use matrices to denote
representations.
Ex. Let G = {Gθ} be the group of counter-clockwise rotations by an angle θ about the z-axis
(i.e G = SU (2)). Then if we work in the vector space R2 with unit vectors ei = {x̂, ŷ} we
can construct the representation which is the set of two-by-two unitary matrices with positive

determinant T (Gθ) = 〈ei, Gθej〉 =

(
cos θ sin θ
− sin θ cos θ

)
. Note that T (Ga)T (Gb) = T (GaGb) . If we

work in the vector space R3 with unit vectors ei = {x̂, ŷ, ẑ} then we can create the representation

〈ei, Gej〉 =

 cos θ sin θ 0
− sin θ cos θ 0
0 0 1

.

Generalization to function spaces: Thm. Let L be the space of functions ψ (~r) and G = {Gi}
be the group of coordinate transformations such that if ψ (~r) ∈ L then ψ (G−1

a ~r) ∈ L. We can then
define a representation T in the function space L such that

T (Ga)ψ (~r) = ψ
(
G−1
a ~r

)
.

Pf. First define ψ′ (~r) = ψ (Gb~r) . Note that

T (Ga)T (Gb)ψ (~r) = T (Ga)ψ
(
G−1
b ~r

)
= T (Ga)ψ

′ (~r) = ψ′
(
G−1
a ~r

)
= ψ

(
G−1
b G−1

a ~r
)

= ψ
(
(GaGb)

−1 ~r
)

= T (GaGb)ψ (~r) .

Since T (Ga)T (Gb) = T (GaGb) , this is a valid representation.

The matrix representation T (Ga) can be obtained by simply calculating T (Ga) =
〈
ψi (~r) , Gaψj (~r)

〉
where ψi (~r) is some basis of the function space L. After we find this matrix, we can calculate
ψ′ (~r) = T (Ga)ψ (~r) = ψ (G−1

a ~r) .
So we see that we can make group representations for spatial variables and, as a more general case,
functions. For the remaining of this presentation, when I write ei as a basis, it represents both a
basis for a “normal” space such as R3 and a basis for a function space.
Definition: If L1 is a subspace of L such that for all ei ∈ L1 it is the case that T (Ga) ei ∈ L1

then we say that L1 is invariant with respect to the transformations induced by G, or an invariant
subspace.
Ex. Once again let G = {Gθ} be the group of counter-clockwise rotations by an angle θ about the
z-axis. We found that if our basis ei = {x̂, ŷ, ẑ}, then a representation of G is the set of matrices cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 . If we define L1 =span{x̂, ŷ} and L2 =span{ẑ} then L1 and L2 are invariant

subspaces.
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Reducibility: Definition: Let L be a space which is invariant with respect to the transfor-
mations T (Ga) induced by some group G = {Ga}. If L1, L2 ⊂ L such that L1, L2 are invariant
subspaces and L2 is the orthogonal complement of L1, then T is reducible with respect to L.
Generally, we can determine whether a matrix representation is reducible by looking at the off
diagonal elements in the matrix. If they are zero, then the representation is reducible. If they are
not zero, then the representation is not reducible.
Theorem: If L1, L2 ⊂ L such that L2 is the orthogonal complement of L1, then L1 is an invariant
subspace wrt a unitary representation T if and only if L2 is an invariant subspace wrt to T .
Pf: Let the basis of L1 and L2 be {ei} and {ej} respectively where the basis vectors can be
functions or coordinates. From the invariance of L1, we have that 〈T (Ga) ei, ej〉 = 0 for all Ga.
Since T is unitary, the invariance condition on L1 can be transformed to 〈ei, T (G−1

a ) ej〉 = 0, which
means that L2 is invariant wrt T.
Note: We will prove later that if T (Ga) is a transformation in the set of representations of a group
G, then T (Ga) can be written as a unitary matrix (i.e. T (Ga)

−1 = T (Ga)
t).

As a consequence of this theorem, if we have orthogonal subspaces such that L = L1 +L2 +L3 + ...
and each of the Li’s is irreducible with respect to a transformation T (Ga) , then we can write the
reduction of the representation as

T (Ga) = T (1) (Ga) + T (2) (Ga) + T (3) (Ga) + ...

where T (i) (Ga) represents the irreducible representation induced in the space Li (the + sign does
not represent normal addition). In this case, the reduced form of T (Ga) can be written in matrix
form as 

T (1)

T (2)

T (3)

. . .


where each T (i) is an irreducible matrix representation of the group G.
Ex. To create the irreducible matrix representation of G = {Gθ} the group of counter-clockwise
rotations by an angle θ about the z-axis in R3, we simply note that L1 =span{x̂, ŷ} and L2 =span{ẑ}

are orthogonal complements. If we look at the matrix

 cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 , we see that the upper

left two-by-two matrix has off-diagonal entries. Therefore the representation is irreducible in the

{x̂, ŷ} and {ẑ} basis. Therefore we write L = L1 +L2 and T = T (1) +T (2) =

(
cos θ sin θ
− sin θ cos θ

)
+ 1

so that

 cos θ sin θ 0
− sin θ cos θ 0
0 0 1

 =

(
T (1)

T (2)

)
. This is a bad example since the matrix is already

in irreducible form, but it gives the general idea.
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