8§ Chapter 1: Representations

1.1 Introduction

One of the many very useful mathematical concepts used in physics is a group. Groups
have been so thoroughly studied that there is an extraordinary amount that can be said
about a particular group’s structure. Groups are wonderful tools for describing
symmetries and thus a physicist might be inclined to exploit group structure to extract
information about his or her problem. However, the mathematical definition of a group is
just a set of elements that obey a few properties and these elements say nothimg worki
in a real world coordinate system. A physicist may thus wish to find a representation for
these group elements that is related to the coordinate system.

1.2 Representations

ConsiderGL(\/n,C), the group of non-singular linear transformations of a vector space
V,. An elementT 0 GL(V,,C) is a mapT :V, - V, over the complex numbers. Now if
we define an ordered basts={V,,v,....,V,} for V,, then every elemenrk O GL(V,,C)

has an associated invertible square matrix with coefficiants[T] ;- There can be some

confusion at this point because some authors defin@¢heralL inear groquL(\/n,C)

in terms linear transformations, whereas others authors define the groupsroteneir
associated matrices. In this reading we use the former definition.

Definition 1.1 A representation of G is defined as a homomorphistn G - GL(V,,C).

If disinjective (every element of the group has a unique matrix representationdl, then
is called daithful representation of G. If we let ={v,,v,,...,v,} be an ordered basis for

V., we then letD be the matrix ofd with respect to this basif) = [d]ﬁ. We thus denote
the coefficients ofD asD; .

Recall that the homomorphic property just says t{afg,) = d(g,)d(g,) Og, O G, a very
necessary property if we hope to accomplish anything. It's worth going over a few of the
highlights of the above definition for understanding. When we defined a represewtation
we did this without specifying a basis for the vector spgcéVe could consider two

different basis oW, , say 5 ={V,,V,,...,V,} and ) ={U,U,,...,U,}. The representatiod

can thus have two very different look associated matrices depending on the chosen basis
to whit D =[d] ;andD’' = [d]y. The two representatior3 and D' are calledequivalent

if they are related by a similarly transforfnsuch thatD’ = S'DS, such as in this case.

Example Let's consider now an example of two representations of the gZpuphis
group can be thought of as the group of 90-degree rotations about the z-axis. We denote
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its elements byC, = %,pg,pn,pgﬁ Note also that this group is generated by the element

p,, and we therefore often denote a group in terms of its gene@tgr<,on>.
E 2

C4 (S] pLT pz: p?,frr

2 2

Unfaithful rep. 1 1 1 1
Faithful rep. [0 1F (1 ot 0 -1

Q a
0 1 H1 ¢ o -1 1 of

The first representation, the unfaithful representation, is aptly called et

representation — notice that it does obey the homomaorphic property and is a mapping to a
one-dimensional vector space. The second representation is faithful becausieeall of
elements are unique — notice that it too obeys the homomaorphic property.

1.3 Invariant Subspaces

From linear algebra we need to recall the idea of a direct sum. Given a vec®Yspa
and two subspacas/) andw @, thenv, =w.® OW® if for every X 0V, X can be
written uniquely ast =W+ W' wherew OW.® and W' 0W® . This means would mean
thatW® nw® =0 and dimQNk(l))+ dimQNn(ﬂ): dim(V,). In terms of basis vectors, this
is equivalent to saying thatW. is spanned byw,,W,,...,w,} andw® by
{Wi.0; Wi, 0., W,_ } thenV, is spanned byw,,W,,...,W,, Wi, W,,,,...,W,_} . When

V=W OW’', we callW' thecomplement of W in V. If w, [\TV'J- =0forall w, OW and

w; OW', we callW' theorthogonal complement of W in V.

Definition Given a representatioth: G — GL(V,,C), then ifv OV, and d(g)v OV, for

all g0 G, then we say,, isinvariant underG. Similarly, if U OV, is a proper
subspaceji O U, andd(g)u O U, for all g0 G, thenU,, is aninvariant subspace under
G.

Theorem Letd:G - GL(\/n,C) be a representation a. [JV, a proper subspace. If
U, is an invariant subspace under then the orthogonal complementwyf, is also an
invariant subspace und@.

Proof (sketch of ideas) For proof of this theorem we consider the representation
d:G - GL(V,,C) in matrix form D with respect to some basjs First we letU? be a

G-invariant subspace &f, and 5 ={v,,...,v,,} be an ordered basis bfY. We extendB

to the ordered basig={v,,...,v,,....,v,} of V, and thus denote the subspat® as being
spanned by ={V_,,,...,v,}. In this case we are not, in particular, looking at the
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orthogonal complement oJ®, but just the complemett®. A representation takes on
the form

EDM . Dy Dy - DlnE

|:| . . : L

D, D .. D[

D(g)= -
g)mﬂ [
I

HDnl e nm Dn,m+1 e Dnn E

Note that | am suppressing some information by simply wribpgnstead ofD,,(g) for
each component. Operating on a basis vegtowith respect to the ordered basis, yields
the vector
D Di 1
O
|:| .

oG~y "

im+1[
O: C
i,
However, for the basis vectovrswherel<i< m we know thatD(g)v, O U,, and thus the
components oD(g)vi zero outside of the subspace. We now have a representation of the
form

raraararir

DY) X(9);
B 7L
00 | D90)x
Apply the homomorphic propert(g,) = D(g,)D(g;) for someg, = g,g, 0 G, we find

that
_ DY) X(@) PY(e)  X(G:)
P(e)=5 0 0 D9, )EDE 0 D<2)(93)m

_PY(@)P"(@:) | X(0:)0°(,)*+ D (@)X (e:):
oo oOEpe) T

D(e) X@)
= O
0 0 D¥g)o
From this we see that bofh® and D also give us representations of the gr@ip

because they obey the homomorphic property. But vbifeseems to be invariant
because it doesn’t ‘leak’ into the other subspace (the lower left hand partitios of

matrix is all zeros)D(z) does leak out of it's subspace and is thus not invariant.

We can extended this argument by decompoSjnigto its G-invariant subspac@,(j)
andU®’s orthogonal complement U®_ which is also &G-invariant subspace. Thus
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V,=uO90uU®@ . If f={v,...,v,} is an ordered basis fat® and ¢ ={v,,,,...,v,} is an
ordered basis fod®, , theny ={v,,...,V,,,V;n.1....,V,} is ordered basis fov,. Extending

the same argument as above, we find that we now have a representation of the form

_P@ 0 ¢
D(g)=0 O/
00 D@y

At this stage it should now be clear that b&f{ and D® are invariant.

So what would happen if we continued to decompose the represenﬁf?ansing the
same method until it can be reduced no more? The representation will be in block
diagonal form and this leads us to the concept of irreducible representations.

Definition A representatiord: G — GL(V,,C) is consideredfreducible if there exists no
non-zero proper subspace\yf invariant undeG.

Theorem 1.2 Every representation is a direct sum of irreducible representations.

Proof Through the extended proof of the last theorem this should be a pretty logical
result. Proof of this can shown by induction on the dimensidr) of

1.4 Direct Product

1979 Nobel Prize winner Steven Weinberg wrote, “The universe is an enormous direct
product of representation of symmetry groups.” Here we examine the direct product and
its representations.

Definition Given a finite collection of group§,, then the direct product is
G 0G,0...06,={(9.9.-.9,)o O G}. We define the binary operation by

(9.9 9. )9 B, 00) = (949, 9,95+, 0,5 -

Example Consider the groug, O C, where(a) =C, and(b) = C,. The group elements
are thus(e.e). (e b).(&b°) (a.€). (a.b)(a.b?).

Definition Let d”:G - GL(V,,C) andd®:G - GL(U,,C) be two representations &f
with basisf ={v,,...v.} and) ={u,,...0,}. We thus have that

D® 9y, = Zvi D, (9) andD® (@) = Z 6Dy (9)

We now define the direct prodluct to be
D2 (g)vj U = [D(l) (g)Vj][D(Z) (g)U|]= ZVJ G Di(jl) (g)Dﬁf) (g)
ik
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This definition does still satisfy the homomorphic property, you can check this easily.
The above definition has so many indices that it’s a little daunting. So note that this is
equivalent to saying

DD DD DYDY YD
D0 (g) = DHip® pgo@L ipf DYDY DIDY DYDY

DUDO DYDT BUDY DYDY DUDY DUDE:

DEDY DD DHDSY DI

if both D® and D are two dimensional representations. This is rather easy to calculate.

The direct product of two irreducible representations is not necessary iblediibe
direct product representation may be the direct sum of irreducible representao
determine exactly how the direct product of a representation decomposes ictto dire
sums, we need a few more tools that we will develop studying characters.

§ Chapter 2: Characters

2.1 Introduction

Having established the basic of representations in the last chapter, we nowewed a
more tools in order to work with them. Ultimately we would like to be able to take the
direct product of two representations and then decompose the direct product into
irreducible sums. Solving this problem is equivalent to finding a ‘good’ set of basis
vectors that block diagonalize the matrices of the representation. This iy éxactl
problem that must be solved in order to find Clebsch-Gordon coefficients as weewill s
later.

This chapter will be presented in a rather unconventional manner. We will begin with a

quick review and by presenting the major results of the chapter. This will help to provide
structure and motivation for the subsequent proofs and derivation of the results.

2.2 The Tools
Recall the definition of a conjugacy class.

Definition 2.1 Let G be a group. Defin€l(a)={xax™:x 0 G} andad G as the
conjugacy class oé. The conjugacy class partitions the grabp

Example 2.2
D, :{x2 =gy’ =gyx= xzy} has three conjugacy classes:
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{e}
o

{y.yx.yx?}

Definition 2.2 Thecharacter of a representatioﬁ)(i) of G is defined as
xV(9)= Tr(D(‘)(g)). The ordered collection of the characters of the elements for a

representation is denoted w) :{Tr(g)|g 0 G}. It may also be convenient to denote
this vector as a ke*p((‘)>.

Theorem 2.3
I. Two equivalent representations have the same character.
il Elements in the same conjugacy class have the same character.
ili. If a representation is unitary, the,((g‘l):)((g)* (complex conjugate).
Pr oof
i. Recall from linear algebra thadir(AB) = Tr(BA). Let D® and D® be two
equivalent representations aBdhe basis-transformation matrix such that
DY = DS, Notice thatTr (D¥)=Tr (SDPs™)=Tr(ssD?)=Tr (D). In
words, two equivalent representations have the same character. This is a great
result because it means that when we use characters, we do so without having
to choose a particular basis for our representation.
il Elements in the same conjugacy class of a group have the same character.
Let's assume thad and b are conjugates given dy= xax™. Then

Tr(D(b))=Tr (D()D@)D(x))=Tr (O(x)D(x*)D(2))
=Tr (D (> )D (a)): Tr(D(e)D(a))=Tr(D(a))

and thus all elements in a conjugacy class have the same character.
ili. If D is unitary thenD™ =D (the conjugate transpose).

X(g_l) =Tr (D (g)_l): Tr (D(g)T): X(g)*
With this, we now present the major results of this chapter.

TheTools
1. The number of irreducible representations of a gi@up equal to the number of
its conjugacy classes,
2. Letn' be the dimension of the ireducible representaBonThen ) n?=|G|. In

words, the sum of the squares of the dimensions of the irreducible representations
Is equal to the size of the group.
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3 L > x9(g) x)(g) =3, We denote this inner product wi(h'(‘)‘)((j)> =J,.

|G| guG
Orthogonality of character for representatiorend j.

4. The character of a representation can be expressed as a linear combirniagion of
characters of the irreducible representations of a group. This is because the

character# )((‘)> span all ofyroup space.

These are the tools necessary to decompose a representation into its irrpauisbléa
representatiord has charactqm and the irreducible representatidh@ have

charactersf,)((i)>, then we simply use the inner product. THyS = z<)(‘)((‘)>‘)((i)>.

If you do not wish to see the derivation of the above results, then skip to the last section
of the chapter and start looking at some examples.

1.3 Schur’'s Lemmas

Lemma Let D be an irreducible representatiin G - GL(V,,C). If A:V, -V, isa
linear transformation that commutes with D(g)A = AD(g) Og U G, then A is a
scalar.

Proof Because we are working over the algebraically close field of the complex numbers,
we know that every linear transformation has at least one eigenvector and corrggpondi
eigenvalue. We leé be an eigenvector oA with corresponding eigenvalué.

Aa=AJa
We can now say that,
A(D(g)a)= D(g)Aa = D(g)Aa = A(D(g)a)
In other words, we see thm(g)éi is also an eigenvector & with eigenvalue ofd.
Actually, D(g)é could be more than one eigenvector because we’re lookinggilaB .
Additionally, this set of eigenvectors also forms a subsphcel V, that must be group

invariant (because we used the group to build it). Because we asfumadeducible,
we are left with two choices, either, =V, or U, ={0}. The latter case is quickly ruled

out because we know that the subspace contains at least one eigenvector, thus we
conclude thaty . =V, . This implies thatAa=Aa for all adV,. ThusA= Al .

LemmaLet D®:G - GL(V,,C) andD®:G - GL(W,,C) be two inequivalent
representations anfl:V, - W_ a mapping between the two vector spaces. If
BDY(g)=D¥(g)B OgO G, thenB=0.

Pr oof
Casel n<m: Let V OV, be arbitrary, therB(D(l)(g)V): (D(z)(g)(BV)). This is just a

fancy way of saying thaéj(z)(g)(Bv))D Im(B) for all g0 G. But of course, we know
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from the definitionB:V, - W, thatim(B) O W,, and that thdm(B) is group invariant

(created byD®). We again invoke the irreducibility of the representatfi, and thus
either Im(B)={0} or Im(B)=W,,. However, the dimension of the image cannot be larger

than the range, thus d(m (#))< n which says tham < n. We have reached a
contradiction, and thus it must be true tBat {0} becausdm(B)={0}.

Case 2 n>m: We consider now the kernel &:V, - W_ by examining the relation
B(D(l)(g)v): (D(Z)(g)(BV)) just as we did before, but instead we use the ve&tasch

that Bk =0. Thus we now have thﬁ(D(l) (g)IZ): (D(Z) (g)(BE)): D@(g)0=0. Thus
D(l)(g)lz O ker(B) for all g0 G and the kernel oB is a group invariant subspace.

Invoking irreducibility, we know that eitheker(B):{ﬁ} or ker(B)=V,. However, we

know that there must be something in the keBid&lecause the transformati@reduces
dimensionality (range larger than the domairy m) and thereforeker(B) =V,. So if the

kernel B is the whole vector space, th&r 0.

Case 3 n=m: Consider the same argument where we knowlth(B) :{6} or
ker(B)=V,. This time ifker(B) ={6} then B is one-to-one and thus invertible. This

would imply that we could writdd®(g) = B*D®(g)B and thusD?(g) = D¥(g), a
contradiction to our assumption that these are inequivalent representations. Waihave t
shown for the third and final time th&=_0.

1.4 Orthogonality

Let D) :G - GL(V,,C) andD¥:G - GL(W,,C) be two representations and
A:V, - W, a mapping between the two vector spaces. We now define the og&rator

B= Z D®) (g) ADM (g—l)

This is the same ordered sum that was used to define the character previously. Notice
what we’re trying to do here. The object is to find an orthogonality relaBobgetween

the different irreducible relations and we will do this by exploiting Schur’'s Lemmas
We’re summing over all of the group elements because, of course, we need to know
about the entire groups behavior. We would expect that if the irreducible representations
are equivalent, thagg™ will just give us the identity elememt The representation @f

is, of course the identity, and we’re summ|@d;times. So we might expect the sum, and
thereforeB, to collapse to the size of the groﬁ) if the irreducible representations are
equivalent (Schur’s First Lemma) and the sum to be zero if they are inequivalemt £S
Second Lemma). Let’s show this now.

Consider now the elements andh™ of G with the representatiorﬁ(”)(h) and
D(V)(h’l). Multiply the sum with these elements and we have that
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D®) (h)BD(V) (h-l) — z DWW (h)D(") (g) ADY) (g-l):)(V) (h-l)

We now use the homomorphic property and find that
DY) (h)BD™ (h™)= 3 DY (hg)AD™ (g*h™)
g
Recall thatg™h™ = (hg) " and thus
D®(n)BD") (h™)= 3 D (hg)AD((hg) ")
g
But the right side of the equation is just equaBtand we therefore have the relation
D) (h)BD(V) (h‘l): B

Now it should be clear that we can use Schur’'s LemiBas.zero if the irreducible
representations are inequivalent, but is some scalar times the identiyaf¢hequal.

We write this as
> D¥(g)ADM (g )= Al &
g

We can actually figure out what is by taking the trace of both sides. We find that

> T (0“(g)AaD¥ (g)=Tr(Al,)
S (D(”) (g)D¥ (g‘l)A): An
%Tr (A)=An

G[Tr(A)=An

L G . .
From which it is clear that = uTr(A). We now have the following relation
n

G
> D¥(g)ADY(g™)= Clg (A)1,F (2.2)
n
g
To proceed any further we are going to have to write the sums with the representations in
terms of their components. However, before we do that it is useful to review sommati
of matrices.

Review

Let D'(g) = D; (g) and D*(g) = D (g) be two matrices whose product,
D*(g) = D'(g)D?(g), can be written a®*(g) = D3, (9). The product
D*(g) = D'(g)D?(g), written with components, reads

Di(9)= 2 D; (9)Pk(9).

Let D“(g)=D/, (9), D*(9)=D;, (9) and A=A, . The left side of equation 2.1
becomes
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ZD (g) iaiz lez(g_l)

912
A fancy way of writing the trace would be to s@y(A) = Z

i1:J2

identity I, can be written ag, =¢;; . Thus, equation 2.1 now becomes

<
ZDlljl(g)AleZ Jz'z(g l)_| |cy" Z (153 J1J2 JlJZ

9.1z i1 2
Equating the coefficients oA, ; two of the sums are gone and we are left with

ZDM(Q) ,2.2(9‘1)-| 53,5 .3, (2.2)

This is what many authors refer to as “The Fundamental Orthogonality Theorem” or
sometimes even “The Great Orthogonality Theorem.” Let’s take a look and retigw w
this theorem tells us about irreducible representations. The first deltaofudttisays
that we'd better be dealing with the same representation or else we’re goingemget z
The next two delta functiong, ¢, ; tell us that the representation gfand its inverse

had better be the transpose of each other, otherwise we’re going to get zero.

, - Additionally, the

i1l2

To find the orthogonality of the characters we just need to take the appropriateWaces
want the trace of the two representations, so we can do this by simply multiplying by the
delta functionsc, ; ¢, . . We thus have the following mess

25'111 J2l2 |111(g)DJz| (g_l)—| |5N '1'2 JlJZ '111512'2

9
The delta functiong, ; ¢ ; ¢; ;. collapse tod,; and we can also write the traces in terms

of characters, thus
%X”(Q)XV (g‘l)=|gn|67”5.ﬂ25.1i2
However, ¢, ¢, is simply ¢, which is justn. Recall also thay” (g‘l):)(” (g) Thus,
|G|ZX (@)x"(g) =" (2.3)
This shows the orthogonality of characters. We therefore define the inner product
) Eé%){”(g)x” (9) ="

This is a very important result that makes dealing with representations a vply &isk.

1.5 Number of Irreducible Representations

In addition to orthogonality of characters for each element, we can also show that the
conjugacy classes characters are orthogonal. Let’'s denote the conjugacy cla§ses by
with n, elements — with a total af classes. It should be pretty clear that we can rewrite
the orthogonality theorem as
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1< y \
@Z niXﬂ(Ki)X (Kj) = 5|j .
i=1
This implies that there can be at mastutually orthogonal vectors (characters). But of
course, this also just means that that there can be atcnrostiucible representations.

Let's denote the number of irreducible representation byhusn, <c.

Alternatively, it is also possible to rewrite the orthogonality theorem as
1 *
@Z niXﬂ(Ki)Xﬂ(Kj) = 5|j
U

Using the same argument as before, this result impliesthat. From which we

conclude that the number of irreducible representations is equal to the number of
conjugacy classes.

Theorem Let D:G - GL(V) be a representation with charadtef and letD, be the
irreducible representations with charaqmﬁ. Then D decomposes in the direct sum of

irreducible representations
D=mD, 0O...0 mD,
wherem, =(x|x,) is the number of occurrences bf.

Proof Think characters!

The last item for us to show is that the sum of the squares of the dimensions of the
irreducible representations is equal to the size of the group.

Theorem Let n' be the dimension of the irreducible representaBonThen % n? =|G|.

Proof Ich habe kein Bock — will das nicht beweisen...
1.6 Examples

Example
Consider now the grou@, = (e,r,rz). We know the grouiC, has three irreducible

representations from fact (1) above. Exploiting fact (2) we knowrthatn? + nZ = 3

wheren, is the dimension of the representation. The only integer solution to this equation
is 1+1+1=3 and we thus have three one-dimensional representations of the group.
Inserting the trivial representation, the character table looks the table below.

€ r r?
DO | 1 1 1
D®@ 1
D® 1

It to find the remaining pieces we use the fact that the characters of 1-dinans
representations are the representations themselves. Thus we know that
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() =1

0 DP(r)=€? ande™

where 8= @
3
C, | e r r2
DO | 1 1 1
D® ‘ 1 gl g%
D® ‘ 1 g% el

At this point it is also important to notice thef® =e™'* and thus we can again write the
character table as

C, | e r r2
DY 1 1 1
D@ 1 el %
D® ‘ 1 -i6 g%

Now let's consider the three-dimensional Euclidean vector spaeR® and the standard
basis. If we wish to consid&Z, as rotations about the z-axis, we already know how to

write one such three dimensional representatidh,

C O C C
G V3 o0 o-1 V3 or

1 0 O %/% 21 O ng 21 C
D'(@)=% 1 c%DV(r):D7 -5 ogDV(rz):B—7 -5 OE
M 0 18 oo 0 1O 00 0 I

0 0 0 C

0 0 0 C

From this we can we see tda(l"> ={3,0,¢ with respect to the basis ¢= {e r,rz} in
group space. Dotting this with the three basis vectpdf)é,‘)((z)>,‘)((3)> it should be clear
that‘)("> :‘)((1)>+‘)((2)>+‘)((3)>. From this we now know thdd" = D® 0 D® [0 D®,

We now need to assign a basis vector to each dimension of each irreducible
representation that makes @ . For example, knowing that we want the z-axis fixed
under this group we can assign the basif ¢ (x,y,2) =z ¢,(X.¥.2) = X, ¢;(x.y.2) = v}

for DY, D@ D respectively. We now observe what a group element does to each of
these vectors.
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DOMMNa(xy.2)=1z=z
0z7z-z

DN (x,y,2) =€x

O x - €
DO @ (xy.2) =€y

Oy -y
0 [0 oo OLC

[]
In the standard basis ai = %)Sy = %gz = %) , we now have that

e BOE &
R
DV(I‘)ZDO e’ O
H o %

and similar construction will yield the other two elements.

Something a little bit more fancy might be to use the basis that will give us therrota
matrices we are used to seeing. Out of thin air we find and then decide to use the basis
y ={z,x +iy,x —iy}. Now we have

DO(Na(xy,2)=1z=z

07z

DO (N (x,y,2) =€ (x +iy)

= (cosf+isinf)(x +iy)

= (xcosf-ysinf)+i(xsind+ ycosb)

and the last term is in the form+iy denoting that
X' - XCos6—ysiné
y' - Xsin@+cosf

The basis we chose f®® yields the same result &?. We have determined the
components oD" (r) in this new basis, namely,

[cost -siné 0L
DY(r)=($ind cosd O
B0 0 I

Example 4
It can be shown that the character tableGpwhereé" denotes the nth root of 1, is the
following:

n-1

X 1 ; g L g
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X(S) 1 E 2 63 o Qr2(n—1)

X(n) ‘ 1 &t g4 . <t("—l)2

So now if you'll notice, the character in th8 representation is the complex conjugate of
the character in thd"@representation. It turns out that the direct sund@f0 D@ O DM
in the basiqz x +iy,x —iy} will give you the following representation,

[cogné) -sin(ng) O
DY (r ”) = %in(n@) cognb) OE
S0 0 T

This is, of course, pretty dang cool and should be relatively clear given the last example
we worked out in more detail.

8 Chapter 3: Infinite Rotational Group

3.1 Introduction

The object now is to examine the three-dimensional rotation group, commonly denoted
by 80(3) -- theSpecialOrthogonal group of three dimensions and determinant 1. The

idea here is to look at this group the same way we looked at the other simpler groups,
such asC,, by finding the representations and their characters of the group. Ultimately,
because this group is infinite, it will prove to be much more difficult to achieve our goals.
However, there are many rewards that we will pick up along the way.

3.2 Generators

Often groups are defined in terms of their generators such as the dihedral-3 group
D, = <x,y‘x3 —gy?= e> ={ex.x%,y,yx,yx’} wherex and y are the generators of the
group. We will now try to find the generators 8D(3). We use the notatioR(a,¢) to
denote the rotation by about the axis. I, represents an infinitesimally small rotation
about theé axis. From basic calculus, we know that
\ imcR@6)"ROAL &R(@.f)
x~0[] a o da |_,

This is great, but there are two things to note at this point. First, as a matter of @mnventi
and convenience we will denote the above limiilpyinstead ofl,. Second, note that

R(0,¢) is actually just the identity matrix, i.e., we don't rotate at all. We now have
(@&)-1t
0 a [

(2.1)
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where| represents the identity matrix. Rearranging the above equation, forcsnvall
can write

R(a.&)=1+ial,.
Here’s a little bit of trickery: to rotate by anglewe now rotate bycl a total ofn times.
n

Hence,

o0k 1]

If we take this limit we no longer have an approximation.
O qil, O
R(a,&)=lim + —
(a.8)=limt += =0
. n
— Z (ml{) :ea”(
— nl
The last step follows from the definition of the exponential function from calculest.Gr

So now we have a way rotation about an axis in terms of the opéraBut just what is

this operator and what does it look like in the standard basR*As you intuitively
suspect, we can represdptin terms a linear combination of, |, and|,. The rotations

about the x, y and z axis can be represented by
[cosa -sina OC

R(a.2)= %ina cosa OE
Bo 0 I
[tose 0 sinal
R(a.y)= B 0O 1 0 E
Esina 0 cosaf
a 0 0cC
R(a,x) :%) cosy sinaE
@ -sina cosaf

From equation 2.1 we can find the infinitesimal rotations for this representation
0 o d [ o0 1- -1 0

19 0 &b o @i o g
10 BLo0@E B o0 C
0 0o oC [ 0 -C EOiOE

,=® 0 -icl,=® 0 O4l,=Fi 0 G-
M i OB B o0 o @ 0 &

Now we can writd, in terms a linear combination ¢f, I, and|,, I, =al, +bl +cl,.

From inspection of the coordinate system we can determine the missing cotsfficie
(Heine, 53). If€ is the angle of th& vector from the z-axis down to the x-y plane and
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is it angle from the x-axis, thely =sin6cos¢l, +sinésingl, +cosél,. We have now

completed the first of our goals. We can write any rotatioR‘iin terms of the three
generatord,, 1, andl,.

3.3 Commutation Relations

The next thing that is useful to consider is the commutations between the three
generators. It should be pretty intuitively clear the three operators don’t conTrhate
simplest method for determining the commutation relations is to just calculateisireg
the representations from above. We could look at the general case, but this repesentat
works just fine too.

[Lo1L,]=1, =11,

0 000 0 <00 0 ~00 0 o
=9 0 i 0 07-® 0 03F 0 -
@ i OHH o o5H 0 0H® i Of
0 @D 10D -1 00
=d 0 079 0 G=d 0
0o dEHO®OED 0

If we use this same procedure we can find the two other relations,

[L.1,]=it,
[I.1,] =1,
[I,.1.]=i1,

These relations turn out to be somewhat useful later. Otherwise they are saidé@uefi
algebra, whatever that means...

3.4 The Irreducible Representations

If you recall from the last chapter, when we were trying to find the irreducible
representations of some group we looked for invariant subspaces of the group. We looked
for subspacesy,,, that contained no proper group invariant subspaces. A set of basis
vectors ofV, could be used to make that particular irreducible representation of that
group. Our approach is going to be the same here. We are going to search for the basis
vectors of subspace invariant under the full rotation group. Because any element of the
full rotation group can be represented by a linear combination of the three generators, we
will use the generators to find the invariant subspaces.

A very nice set of vectors to work with, are the eigenvectors of the rotation
operators. However, from the commutation relations, we know that the generators cannot
have simultaneous eigenvectors. By convention we will work with the eigenvectors of the
|, operator. Let’s start by working in some finite n-dimensional subspat®at we
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assume is group invariant. We can now assumeljlies a least one eigenvectoMn
let's denote it byl,|m) = m/m).
Let’s see if we can find the other eigenvectors,offhe recommend way of

doing this is to create an operator, calfjtthat moves from the one eigenvector that we
know exists,| m>, to the other eigenvectots. Symbolically we want

{QIZ(SJ m))=A(Y m>)} Amazingly, just by examining the commutation relations we can
determine what actually has to be. Usidgm) as our test function,
,S[m) -9, |m)
= A§m) -mSm)
=(A-m)gm)
From which we see thdt,, S| = kS for somek. Of course, everything in the group can
be written as a linear combination of the generators, so we can3wrigé, + bl +cl,.
Let’s try the commutation relation one more time.
[1.5]=1,5-9,
=1,(al, +bl, +cl,)-(al, +bl, +cl),
=al,l, +bll +cll,—all,=bll, —cll,
=a(l,l, - 1,1,)+b(1,-1,1,)
=a(il,)+b(-il,)
=-ibl +ial,
But since we know from above thElg,S] = k(alX +bl, + clz), we can equate the

coefficients. Doing this we find that=0, a:%(—i b) and a=k(-ib). The only values of

k that satisfy the relatiok :% are k =+1. From this we now see th&=a(l, +il, ).

Letting a=1 we now denote the twé operators as, =1, +il, and|_=1,-il, with
commutation relation§l,,1,] =1, .

Let's examine what, do to the eigenvectdm) of 1.
m)=1,1,|m)

LI,

z

m) =11, m)+1.1,

m=[1,1.]
m) = £1,|m)+ml,

,1.|m)=(m=D)I,|m)
So it seems thalt, moves the eigenvectd:m) to an eigenvector with an eigenvalue 1
higher. Let's write this a$,|m) =c_|m+1) where the constant, is yet to be

determined. Similarly]_ lowers the eigenvector. This is a little bit of a problem because
we want to deal with finite vector spaces, so we can just arbitrarily say tHaﬁ th@

m) = 1.1,

m)

m+ 1.1,

m)

IZIi

LI,

z

m)
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vector is the last one and thu+$j> =0. At this point it’s thus probably good to change
our notation a little and write our vectors|¢3n> so we know that we can only raige
up to j before we’re done and hit the wall.
We need to take care of one thing that will soon be useful. We need to determine

[..1].
[L]=00 -1,
= (1, +i1, ) =ity )= (1 =i, )0, +1,)

=1 =i+l L =1L =il +il L =1L
==2i[1,.1,]

=2,

Given thatl,
c, andd

m) =c,|m+1), we will similarly definel_|m)=d,|m-1). Let's see how
relate.

m+1
(m=1jt,[m) = {mlc,m) =
(mllm+1) = (md,,.|m) = d,.q
O Cm :dm+1
Now we’re set to determine,,.
L1 C 1
[,im=-1) =1, I_{m)=—I,1_|{m
m=1) =15 Lim)g= oL )

m

:i(|_|++2|2]m>

m)+21,/m))

(dm+1 +2m)m)
but we also know that, |m - 1> Cm|M). Setting the component equal we see that

di (dm+1cm + 2m) = Cm—1

m

@+ 2m) =0,y

m

O c,’+2m=c,’
We're almost there! We now have a recursive equation that establisheisshregm
coefficients. Solutions to this type of equation are often solved in numerical analysis
books, see Stegneilskrete Srukturen for example of this. We start by substituting

c.’=b_ and reducing it to a linear equation. Now,
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b,,=b,+2m
Ob,,-b,-2m=0
O b, —bm+1—2(m+1):0
The difference of these last two equations gets rid of that pesky
b,,-b,—-2m=0
-b,+b,,,+2m+2=0
b.,-2b,+b,,,+2=0

m

Now we just need to get rid of the 2, so we use the same process one more time.
b,,—2b,+b,.,,+2=0
-b,+2b,,,-b,.,—2=0

_bm+2 + 3bm+l - 3lom + bm—l = 0

Finally we can write and solve the characteristic equation for the recursion.
A -3 +31-1=0
0 (A-2°=0
Thus closed form solutions to the recursion take the form
b, =am’1™ + fml™ + 1"

or simply,
b =am*+fm+y.
with still to be determined coefficients, £ and ). To determine these coefficients we
can plug in the first three iterations of the recursions. We know that w@ because
that's to be the end of the ladder. Thus,
b, =b; +2]
0 b, =2]
Similarly,
b, ,=b,,+2(j -1)
O b,_,=2j+2j-2
Ob_,=4j-2
We can write that,
b, =aj*+ 4 +y=0
b, =a(i-1) +A(i -1+ y=2]
b,=a(i-2) +p(i-2)+y=4j-2

Three equations and three unknowns can be easily solved. In matrix form,
Lo CotC

L2 -
-’ i1 G@Fo 2 |
Hi-2° j-2 HBA @Bj-2
From which it easily determined that=-1, £ =-1and ) = j(j +1). Thus,
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b, =-m?-m+ j(j +1)

O b,=i(j +)-m(m+1)

O c, :\/j(j +1)-m(m+1)
We can use the exact same process to determine the coefficient foofherator acting
on an eigenvector of,. Our final results are thus,

L|jm)=mj,m)
L13m) =i(J +2) = m(m+ 1) j,m+1)

L5:m) =/ (i +1) - m(m-1)|j,m-1)
From this we can see that not only ddgs, )=0, butl_|j,~j)=0. So it would seem
that for some value of, m can take on values ranging fropto —j. Thus for some
value of j there are2j +1 eigenvectors of,,. Because we’re working in some n-

dimensional vector space and n is a whole number, this places a limit on whatjvalues
can assume.

n=2j+1
0 j:n+1
2

So it seem thaj can assume any half-integer vaILje*-,%,Lg,

So what have we done? We have found what the irreducible representations of the
rotation group look like using the eigenvectord pés a basis. Right now we have

everything in terms of,, I, and|1_, but because we know holy relate tol, and |, we

FANRES

can easily recover their form. Also remember that because we caivimiterms a

linear combination of,, 1, andl,, we have the irreducible representations of and

arbitrary rotationl,. Let’s explicitly write out the first two irreducible representations for
I, 1, 1,1 andl

+1 -y Iy ly

For the | —% representation we have two eigenvectors, QE %> and %,—

1> With
2

respect to those as an ordered basis we can now write

] _EEl OEI _m) 1DI _
20 -1t Tl o B oE
We also know that, :§(|+ +1.) andl :—_(I +1.), thus
1D 100 1°

"‘B,oH 2B

For the j =1 representation we have the three eigenvedtor|1011-1)} forming
basis. Thus,
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1 0 o0 %) 2 oE 0o o O
,=9 0 05.=® 0 +23.=32 0 G
o-5 B o o Bo v2 o
Uo 42 og Bo \2 og
L=-n2 o \/Emlyzlx:lfr\/z 0 2
Ho v2 of o -2 of

3.5 Characters of the irreducible representation

Just as we did in the last chapter, we can compute the characters of the ireducibl
representations. Finding the characters, as you recall, is very useful in determimimg whi
irreducible representations compose the reducible representation.
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