
§ Chapter 1: Representations 
 
1.1 Introduction 
 
One of the many very useful mathematical concepts used in physics is a group. Groups 
have been so thoroughly studied that there is an extraordinary amount that can be said 
about a particular group’s structure. Groups are wonderful tools for describing 
symmetries and thus a physicist might be inclined to exploit group structure to extract 
information about his or her problem. However, the mathematical definition of a group is 
just a set of elements that obey a few properties and these elements say nothing working 
in a real world coordinate system. A physicist may thus wish to find a representation for 
these group elements that is related to the coordinate system. 
 
1.2 Representations 
 
Consider GL Vn,C( ), the group of non-singular linear transformations of a vector space 
Vn . An element T ∈ GL Vn,C( ) is a map T :Vn →Vn  over the complex numbers. Now if 
we define an ordered basis 

��
β =

&�
v 1,

&�
v 2,…,

&�
v n{ }  for Vn , then every element T ∈ GL Vn,C( ) 

has an associated invertible square matrix with coefficients aij = T[ ]β . There can be some 

confusion at this point because some authors define the General Linear group GL Vn,C( ) 
in terms linear transformations, whereas others authors define the group in terms of their 
associated matrices. In this reading we use the former definition. 
 
Definition 1.1 A representation of G is defined as a homomorphism d : G → GL Vn,C( ). 
If d is injective (every element of the group has a unique matrix representation), then d 
is called a faithful representation of G. If we let 

��
β =

&�
v 1,

&�
v 2,…,

&�
v n{ }  be an ordered basis for 

Vn , we then let D be the matrix of d with respect to this basis, D = d[ ]β . We thus denote 

the coefficients of D as Dij . 

 
Recall that the homomorphic property just says that d g1g2( )= d g1( )d g2( ) ∀ gi ∈ G , a very 
necessary property if we hope to accomplish anything. It’s worth going over a few of the 
highlights of the above definition for understanding. When we defined a representation d 
we did this without specifying a basis for the vector space Vn . We could consider two 
different basis of Vn , say 

��
β =

&�
v 1,

&�
v 2,…,

&�
v n{ }  and 

��
γ =

&�
u 1,

&�
u 2,…,

&�
u n{ } . The representation d 

can thus have two very different look associated matrices depending on the chosen basis, 
to whit D = d[ ]β  and ′ D = d[ ]γ . The two representations D and ′ D  are called equivalent 

if they are related by a similarly transform S such that ′ D = S−1DS , such as in this case. 
 
Example Let’s consider now an example of two representations of the group C4 . This 
group can be thought of as the group of 90-degree rotations about the z-axis. We denote 
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its elements by C4 = e,ρπ
2

,ρπ,ρ3π
2

 
 
  

 
 . Note also that this group is generated by the element 

ρπ
2

 and we therefore often denote a group in terms of its generator, C4 = ρπ
2

. 

 
C4  e  ρπ

2

 ρπ  ρ3π
2

 

Unfaithful rep.  1 1 1 1 
Faithful rep. 1 0

0 1

 

 
 

 

 
  

0 1

−1 0

 

 
 

 

 
  

−1 0

0 −1

 

 
 

 

 
  

0 −1

1 0

 

 
 

 

 
  

 
The first representation, the unfaithful representation, is aptly called the trivial 
representation – notice that it does obey the homomorphic property and is a mapping to a 
one-dimensional vector space. The second representation is faithful because all of the 
elements are unique – notice that it too obeys the homomorphic property. 
 
1.3 Invariant Subspaces 
 
From linear algebra we need to recall the idea of a direct sum. Given a vector space Vn  

and two subspaces Wk
1( ) and Wn−k

2( ) , then Vn =Wk
1( ) ⊕ Wn−k

2( )  if for every ��
&�
x ∈ Vn  ��

&�
x  can be 

written uniquely as ��
&�
x =

&�
w +

&�′ w  where ��
&�
w ∈ Wk

1( ) and ��
&�′ w ∈ Wn−k

2( ) . This means would mean 

that Wk
1( ) ∩ Wn−k

2( ) = ∅  and dim Wk
1( )( )+ dim Wn−k

2( )( )= dim Vn( ). In terms of basis vectors, this 

is equivalent to saying that if Wk
1( ) is spanned by 

��

&�
w 1,

&�
w 2,…,

&�
w k{ }  and Wn−k

2( )  by 

��

&�′ w k+1,
&�′ w k+2,…,

&�
w n−k{ }  then Vn  is spanned by 

��

&�
w 1,

&�
w 2,…,

&�
w k,

&�′ w k+1,
&�′ w k+2,…,

&�
w n−k{ } . When 

V =W ⊕ ′ W , we call ′ W  the complement of W  in V . If 
��

&�
w i ⋅

&�′ w j = 0 for all ��
&�
w i ∈ W  and 

��

&�′ w j ∈ ′ W , we call ′ W  the orthogonal complement of W  in V . 

 
Definition Given a representation d : G → GL Vn,C( ), then if ��

&�
v ∈ Vn  and 

��
d g( )&�v ∈ Vn  for 

all g ∈ G , then we say Vn  is invariant under G. Similarly, if Um ⊂ Vn is a proper 
subspace, ��

&�
u ∈ Um and 

��
d g( )&�u ∈ Um  for all g ∈ G , then Um  is an invariant subspace under 

G. 
 
Theorem Let d : G → GL Vn,C( ) be a representation and Um ⊂ Vn a proper subspace. If 
Um  is an invariant subspace under G, then the orthogonal complement of Um  is also an 
invariant subspace under G. 
 
Proof (sketch of ideas) For proof of this theorem we consider the representation 
d : G → GL Vn,C( ) in matrix form D with respect to some basis γ. First we let Um

1( ) be a 

G-invariant subspace of Vn  and β = v1,…,vm{ }  be an ordered basis of Um
1( ). We extend B 

to the ordered basis γ = v1,…,vm,…,vn{ }  of Vn  and thus denote the subspace Um
2( ) as being 

spanned by 
��
δ =

&�
v m +1,…,vn{ } . In this case we are not, in particular, looking at the 
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orthogonal complement of Um
1( ), but just the complement Um

2( ).   A representation takes on 
the form 

��

D g( )=

D11 … D1m D1,m +1 … D1n

� � � �

Dm1 … Dmm Dm,m +1 … Dmn

Dm +1 …
� �

Dn1 … Dnm Dn,m +1 … Dnn

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

Note that I am suppressing some information by simply writing D11 instead of D11 g( ) for 
each component. Operating on a basis vector v i, with respect to the ordered basis, yields 
the vector 

��

D g( )v i =

Di,1

�

Di,m

Di,m +1

�

Di,n

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

. 

However, for the basis vectors v i where 1≤ i ≤ m we know that D g( )v i ∈ Um  and thus the 
components of D g( )v i  zero outside of the subspace. We now have a representation of the 
form 

D 1( ) g( ) X g( )
0 D 2( ) g( )

 

 
 

 

 
 . 

Apply the homomorphic property D g1( )= D g2( )D g3( ) for some g1 = g2g3 ∈ G, we find 
that 

D g1( )=
D 1( ) g2( ) X g2( )

0 D 2( ) g2( )
 

 
 

 

 
 ⋅

D 1( ) g3( ) X g3( )
0 D 2( ) g3( )

 

 
 

 

 
 

=
D 1( ) g2( )D 1( ) g3( ) X g2( )D 1( ) g3( )+ D 2( ) g2( )X g3( )

0 D 2( ) g2( )D 2( ) g3( )
 

 
 

 

 
 

=
D 1( ) g1( ) X g1( )

0 D 2( ) g1( )
 

 
 

 

 
 

. 

From this we see that both D 1( ) and D 2( ) also give us representations of the group G 
because they obey the homomorphic property. But while D 1( ) seems to be invariant 
because it doesn’t ‘leak’ into the other subspace (the lower left hand partition of the 
matrix is all zeros), D 2( ) does leak out of it’s subspace and is thus not invariant. 
 
We can extended this argument by decomposing Vn  into its G-invariant subspace Um

1( ) 

and Um
1( )’s orthogonal complement Un−m

2( )  which is also a G-invariant subspace. Thus 
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Vn =Um
1( ) ⊕ Un−m

2( ) . If β = v1,…,vm{ }  is an ordered basis for Um
1( ) and δ = vm +1,…,vn{ }  is an 

ordered basis for Un−m
2( ) , then γ = v1,…,vm,vm +1,…,vn{ }  is ordered basis for Vn . Extending 

the same argument as above, we find that we now have a representation of the form 

D g( )=
D 1( ) g( ) 0

0 D 2( ) g( )
 

 
 

 

 
 . 

At this stage it should now be clear that both D 1( ) and D 2( ) are invariant. 
 
So what would happen if we continued to decompose the representations D i( ) using the 
same method until it can be reduced no more? The representation will be in block 
diagonal form and this leads us to the concept of irreducible representations. 
 
Definition A representation d : G → GL Vn,C( ) is considered irreducible if there exists no 
non-zero proper subspace of Vn  invariant under G. 
 
Theorem 1.2 Every representation is a direct sum of irreducible representations. 
 
Proof Through the extended proof of the last theorem this should be a pretty logical 
result. Proof of this can shown by induction on the dimension of Vn . 
 
1.4 Direct Product 
 
1979 Nobel Prize winner Steven Weinberg wrote, “The universe is an enormous direct 
product of representation of symmetry groups.” Here we examine the direct product and 
its representations. 
 
Definition Given a finite collection of groups Gi, then the direct product is 
G1 ⊗ G2 ⊗ … ⊗ Gn = g1,g2,…,gn( )gi ∈ Gi{ } . We define the binary operation by 

g1,g2,…,gn( ) ′ g 1, ′ g 2,…, ′ g n( )= g1 ′ g 1,g2 ′ g 2,…,gn ′ g n( ). 
 
Example Consider the group C2 ⊗ C3 where a = C2 and b = C3. The group elements 

are thus e,e( ), e,b( ), e,b2( ), a,e( ), a,b( ) a,b2( ). 
 
Definition Let d 1( ) : G → GL Vn,C( ) and d 2( ) : G → GL Uk,C( ) be two representations of G 
with basis 

��
β =

&�
v 1,…

&�
v n{ }  and 

��
γ =

&�
u 1,…

&�
u k{ } . We thus have that 

��

D 1( ) g( )&�v j =
&�
v iDij g( )

i

∑  and D 2( ) g( )&�u l =
&�
u kDkl g( )

k

∑  

We now define the direct product to be 

��

D 1×2( ) g( )&�v j
&�
u l ≡ D 1( ) g( )&�v j[ ] D 2( ) g( )&�u l[ ]=

&�
v j
&�
u lDij

1( ) g( )Dkl
2( ) g( )

i,k

∑ . 
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This definition does still satisfy the homomorphic property, you can check this easily. 
The above definition has so many indices that it’s a little daunting. So note that this is 
equivalent to saying 

D 1×2( ) g( )=
D11

1( )D 2( ) D12
1( )D 2( )

D21
1( )D 2( ) D22

1( )D 2( )

 

 
 

 

 
 =

D11
1( )D11

2( ) D11
1( )D12

2( ) D12
1( )D11

2( ) D12
1( )D12

2( )

D11
1( )D21

2( ) D11
1( )D22

2( ) D12
1( )D21

2( ) D12
1( )D22

2( )

D21
1( )D11

2( ) D21
1( )D12

2( ) D22
1( )D11

2( ) D22
1( )D12

2( )

D21
1( )D21

2( ) D21
1( )D22

2( ) D22
1( )D21

2( ) D22
1( )D22

2( )

 

 

 
 
 
 

 

 

 
 
 
 
 

if both D 1( ) and D 2( ) are two dimensional representations. This is rather easy to calculate. 
 
The direct product of two irreducible representations is not necessary irreducible. The 
direct product representation may be the direct sum of irreducible representations. To 
determine exactly how the direct product of a representation decomposes into direct 
sums, we need a few more tools that we will develop studying characters. 
 
 
 

§ Chapter 2: Characters 
 
2.1 Introduction 
 
Having established the basic of representations in the last chapter, we now need a few 
more tools in order to work with them. Ultimately we would like to be able to take the 
direct product of two representations and then decompose the direct product into 
irreducible sums. Solving this problem is equivalent to finding a ‘good’ set of basis 
vectors that block diagonalize the matrices of the representation. This is exactly the 
problem that must be solved in order to find Clebsch-Gordon coefficients as we will see 
later. 
 
This chapter will be presented in a rather unconventional manner. We will begin with a 
quick review and by presenting the major results of the chapter. This will help to provide 
structure and motivation for the subsequent proofs and derivation of the results. 
 
2.2 The Tools 
 
Recall the definition of a conjugacy class. 
 
Definition 2.1 Let G be a group. Define Cl a( )= xax−1 : x ∈ G{ } and a ∈ G  as the 

conjugacy class of a. The conjugacy class partitions the group G. 
 
Example 2.2 
D3 = x2 = e,y2 = e,yx = x2y{ } has three conjugacy classes: 
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e{ }
x,x2{ }
y,yx,yx2{ }

 

 
Definition 2.2 The character of a representation D i( ) of G is defined as 
χ i( ) g( )= Tr D i( ) g( )( ). The ordered collection of the characters of the elements for a 

representation is denoted by χ i( ) = Tr g( )g ∈ G{ } . It may also be convenient to denote 

this vector as a ket χ i( ) . 

 
Theorem 2.3  

i. Two equivalent representations have the same character. 
ii. Elements in the same conjugacy class have the same character. 

iii. If a representation is unitary, then χ g−1( )= χ g( )*
 (complex conjugate). 

Proof 
i. Recall from linear algebra that Tr AB( )= Tr BA( ). Let D 1( ) and D 2( ) be two 

equivalent representations and S the basis-transformation matrix such that 
D 1( ) = SD 2( )S−1. Notice that Tr D 1( )( )= Tr SD 2( )S−1( )= Tr S−1SD 2( )( )= Tr D 2( )( ). In 

words, two equivalent representations have the same character. This is a great 
result because it means that when we use characters, we do so without having 
to choose a particular basis for our representation. 

ii. Elements in the same conjugacy class of a group have the same character. 
Let’s assume that a and b are conjugates given by b = xax−1. Then 

Tr D b( )( )= Tr D x( )D a( )D x−1( )( )= Tr D x( )D x−1( )D a( )( )
= Tr D xx−1( )D a( )( )= Tr D e( )D a( )( )= Tr D a( )( )

 

 and thus all elements in a conjugacy class have the same character. 
iii. If D is unitary then D−1 = D† (the conjugate transpose). 

 χ g−1( )= Tr D g( )−1( )= Tr D g( )†( )= χ g( )*
 

 
With this, we now present the major results of this chapter. 
 
The Tools 

1. The number of irreducible representations of a group G is equal to the number of 
its conjugacy classes, c . 

2. Let n i  be the dimension of the irreducible representation Di . Then ni
2

i

∑ = G . In 

words, the sum of the squares of the dimensions of the irreducible representations 
is equal to the size of the group. 
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3. 
1

G
χ i( ) g( )* χ j( ) g( )=

g ∈ G

∑ δij . We denote this inner product with χ i( ) χ j( ) =δij . 

Orthogonality of character for representations i  and j . 
4. The character of a representation can be expressed as a linear combination of the 

characters of the irreducible representations of a group. This is because the 
characters χ i( )  span all of group space. 

 
These are the tools necessary to decompose a representation into its irreducible parts. If a 
representation D has character χ  and the irreducible representations D i( ) have 

characters χ i( ) , then we simply use the inner product. Thus, χ = χ χ i( ) χ i( )

i

∑ . 

 
If you do not wish to see the derivation of the above results, then skip to the last section 
of the chapter and start looking at some examples. 
 
1.3 Schur’s Lemmas 
 
Lemma Let D be an irreducible representation D : G → GL Vn,C( ). If A :Vn →Vn  is a 
linear transformation that commutes with D, D g( )A = AD g( ) ∀ g ∈ G , then A  is a 
scalar. 
 
Proof Because we are working over the algebraically close field of the complex numbers, 
we know that every linear transformation has at least one eigenvector and corresponding 
eigenvalue. We let ��

&�
a  be an eigenvector of A  with corresponding eigenvalue λ . 

��A
&�
a = λ&�a  

We can now say that, 

��
A D g( )&�a ( )= D g( )A

&�
a = D g( )λ&�a = λ D g( )&�a ( ) 

In other words, we see that 
��
D g( )&�a  is also an eigenvector of A  with eigenvalue of λ . 

Actually, 
��
D g( )&�a  could be more than one eigenvector because we’re looking at all g ∈ G . 

Additionally, this set of eigenvectors also forms a subspace Um ⊆ Vn that must be group 
invariant (because we used the group to build it). Because we assumed D is irreducible, 
we are left with two choices, either Um =Vn  or Um = 0{ } . The latter case is quickly ruled 
out because we know that the subspace contains at least one eigenvector, thus we 
conclude that Um =Vn . This implies that ��A

&�
a = λ&�a  for all ��

&�
a ∈ Vn . Thus A = λIn . 

 
Lemma Let D 1( ) : G → GL Vn,C( ) and D 2( ) : G → GL Wm,C( ) be two inequivalent 
representations and B :Vn →Wm a mapping between the two vector spaces. If 

BD 1( ) g( )= D 2( ) g( )B  ∀ g ∈ G, then B = 0. 
 
Proof 
Case 1 n < m: Let ��

&�
v ∈ Vn  be arbitrary, then 

��
B D 1( ) g( )&�v ( )= D 2( ) g( ) B

&�
v ( )( ). This is just a 

fancy way of saying that 
��
D 2( ) g( ) B

&�
v ( )( )∈ Im B( ) for all g ∈ G . But of course, we know 
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from the definition B :Vn →Wm that Im B( ) ⊆ Wm  and that the Im B( ) is group invariant 

(created by D 2( )). We again invoke the irreducibility of the representation D 2( ), and thus 
either Im B( )= 0{ }  or Im B( )=Wm . However, the dimension of the image cannot be larger 

than the range, thus dim ImA( )( )≤ n  which says that m ≤ n. We have reached a 

contradiction, and thus it must be true that B = 0{ }  because Im B( )= 0{ } . 
 
Case 2 n > m: We consider now the kernel of B :Vn →Wm by examining the relation 

��
B D 1( ) g( )&�v ( )= D 2( ) g( ) B

&�
v ( )( ) just as we did before, but instead we use the vectors ��

&�
k  such 

that ��B
&�
k =

&�
0 . Thus we now have that 

��
B D 1( ) g( )

&�
k ( )= D 2( ) g( ) B

&�
k ( )( )= D 2( ) g( )

&�
0 =

&�
0 . Thus 

��
D 1( ) g( )

&�
k ∈ ker B( ) for all g ∈ G  and the kernel of B is a group invariant subspace. 

Invoking irreducibility, we know that either 
��
ker B( )=

&�
0 { } or ker B( )=Vn . However, we 

know that there must be something in the kernel B because the transformation B reduces 
dimensionality (range larger than the domain, n > m) and therefore ker B( )=Vn . So if the 
kernel B is the whole vector space, then B = 0. 
 
Case 3 n = m: Consider the same argument where we know that 

��
ker B( )=

&�
0 { } or 

ker B( )=Vn . This time if 
��
ker B( )=

&�
0 { }, then B is one-to-one and thus invertible. This 

would imply that we could write D 2( ) g( )= B−1D 1( ) g( )B  and thus D 2( ) g( )= D 1( ) g( ), a 
contradiction to our assumption that these are inequivalent representations. We have thus 
shown for the third and final time that B = 0. 
 
1.4 Orthogonality 
 
Let D ν( ) : G → GL Vn,C( ) and D µ( ) : G → GL Wm,C( ) be two representations and 
A :Vn →Wm  a mapping between the two vector spaces. We now define the operator B, 

B = D µ( ) g( )AD ν( ) g−1( )
g

∑  

This is the same ordered sum that was used to define the character previously. Notice 
what we’re trying to do here. The object is to find an orthogonality relation, B, between 
the different irreducible relations and we will do this by exploiting Schur’s Lemmas. 
We’re summing over all of the group elements because, of course, we need to know 
about the entire groups behavior. We would expect that if the irreducible representations 
are equivalent, that gg−1 will just give us the identity element e . The representation of e  
is, of course the identity, and we’re summing G  times. So we might expect the sum, and 
therefore B, to collapse to the size of the group G  if the irreducible representations are 
equivalent (Schur’s First Lemma) and the sum to be zero if they are inequivalent (Schur’s 
Second Lemma). Let’s show this now. 
 
Consider now the elements h  and h−1 of G with the representations D µ( ) h( ) and 

D ν( ) h−1( ). Multiply the sum with these elements and we have that 
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D µ( ) h( )BD ν( ) h−1( )= D µ( ) h( )D µ( ) g( )AD ν( ) g−1( )
g

∑ D ν( ) h−1( ) 
We now use the homomorphic property and find that 

D µ( ) h( )BD ν( ) h−1( )= D µ( ) hg( )AD ν( ) g−1h−1( )
g

∑  

Recall that g−1h−1 = hg( )−1
 and thus  

D µ( ) h( )BD ν( ) h−1( )= D µ( ) hg( )AD ν( ) hg( )−1( )
g

∑  

But the right side of the equation is just equal to B and we therefore have the relation 
D µ( ) h( )BD ν( ) h−1( )= B 

Now it should be clear that we can use Schur’s Lemmas. B is zero if the irreducible 
representations are inequivalent, but is some scalar times the identity if they are equal. 
We write this as 

D µ( ) g( )AD ν( ) g−1( )
g

∑ = λInδ
µν  

We can actually figure out what λ  is by taking the trace of both sides. We find that 
Tr D µ( ) g( )AD µ( ) g−1( )( )

g

∑ = Tr λIn( )

Tr D µ( ) g( )D µ( ) g−1( )A( )
g

∑ = λn

Tr A( )
g

∑ = λn

G Tr A( )= λn

 

From which it is clear that λ =
G

n
Tr A( ). We now have the following relation 

D µ( ) g( )AD ν( ) g−1( )
g

∑ =
G

n
Tr A( )Inδ

µν  (2.1) 

To proceed any further we are going to have to write the sums with the representations in 
terms of their components. However, before we do that it is useful to review summation 
of matrices. 
 

Review 
Let D1 g( )= Dij

1 g( ) and D2 g( )= Dkl
2 g( ) be two matrices whose product, 

D3 g( )= D1 g( )D2 g( ), can be written as D3 g( )= Dmn
3 g( ). The product 

D3 g( )= D1 g( )D2 g( ), written with components, reads 

Dik
3 g( )= Dij

1 g( )D jk
2 g( )

j

∑ . 

 
Let Dµ g( )= Di1 j1

µ g( ), Dν g( )= Di2 j2

ν g( ) and A = Ai3 j3
. The left side of equation 2.1 

becomes 
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Di1 j1

µ g( )A j1 j2
D j2i2

ν g−1( )
g, j1, j2

∑  

A fancy way of writing the trace would be to say Tr A( )= δ j1 j2
A j1 j2

j1 , j2

∑ . Additionally, the 

identity In  can be written as In =δi1i2
. Thus, equation 2.1 now becomes 

Di1 j1

µ g( )A j1 j2
D j2i2

ν g−1( )
g, j1, j2

∑ =
G

n
δµν δi1i2

δ j1 j2
A j1 j2

j1, j2

∑  

Equating the coefficients of A j1 j2
  two of the sums are gone and we are left with 

Di1 j1

µ g( )D j2i2

ν g−1( )
g

∑ =
G

n
δµνδi1i2

δ j1 j2
 (2.2) 

This is what many authors refer to as “The Fundamental Orthogonality Theorem” or 
sometimes even “The Great Orthogonality Theorem.” Let’s take a look and review what 
this theorem tells us about irreducible representations. The first delta function δµν  says 
that we’d better be dealing with the same representation or else we’re going to get zero. 
The next two delta functions δi1i2

δ j1 j2
 tell us that the representation of g and its inverse 

had better be the transpose of each other, otherwise we’re going to get zero. 
 
To find the orthogonality of the characters we just need to take the appropriate traces. We 
want the trace of the two representations, so we can do this by simply multiplying by the 
delta functions δi1 j1

δ j2i2
. We thus have the following mess 

δi1 j1
δ j2i2

Di1 j1

µ g( )D j2i2

ν g−1( )
g

∑ =
G

n
δµνδi1i2

δ j1 j2
δi1 j1

δ j2i2
 

The delta functions δ j1 j2
δi1 j1

δ j2i2
 collapse to δi1i2

 and we can also write the traces in terms 

of characters, thus 

χ µ g( )χ ν g−1( )
g

∑ =
G

n
δµνδi1i2

δi1i2
 

However, δi1i2
δi1i2

 is simply δi1i1
 which is just n. Recall also that χ ν g−1( )= χ ν g( )*

. Thus, 

1

G
χ µ g( )χ ν g( )*

g

∑ =δµν  (2.3) 

This shows the orthogonality of characters. We therefore define the inner product 

χ µ χ ν ≡ 1

G
χ µ g( )χ ν g( )*

g

∑ =δµν  

This is a very important result that makes dealing with representations a very simple task. 
 
1.5 Number of Irreducible Representations 
 
In addition to orthogonality of characters for each element, we can also show that the 
conjugacy classes characters are orthogonal. Let’s denote the conjugacy classes by K i 
with ni elements – with a total of c  classes. It should be pretty clear that we can rewrite 
the orthogonality theorem as 
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1

G
niχ

µ K i( )χ ν K j( )*

i=1

c

∑ =δij . 

This implies that there can be at most c  mutually orthogonal vectors (characters). But of 
course, this also just means that that there can be at most c  irreducible representations. 
Let’s denote the number of irreducible representation by nr, thus nr ≤ c . 
 
Alternatively, it is also possible to rewrite the orthogonality theorem as 

1

G
niχ

µ K i( )χ µ K j( )*

µ
∑ =δij  

Using the same argument as before, this result implies that c ≤ nr . From which we 
conclude that the number of irreducible representations is equal to the number of 
conjugacy classes. 
 
Theorem Let D : G → GL V( ) be a representation with character χ  and let Di be the 
irreducible representations with character χ i . Then D decomposes in the direct sum of 
irreducible representations 

D = m1D1 ⊕ … ⊕ mcDc  
where mi = χ χ i  is the number of occurrences of Di. 
 
Proof Think characters! 
 
The last item for us to show is that the sum of the squares of the dimensions of the 
irreducible representations is equal to the size of the group. 
 
Theorem Let n i  be the dimension of the irreducible representation Di . Then ni

2

i

∑ = G . 

Proof Ich habe kein Bock – will das nicht beweisen… 
 
1.6 Examples 
 
Example 
Consider now the group C3 = e,r,r2( ). We know the group C3 has three irreducible 

representations from fact (1) above. Exploiting fact (2) we know that n1
2 + n2

2 + n3
2 = 3 

where ni is the dimension of the representation. The only integer solution to this equation 
is 1+1+1= 3 and we thus have three one-dimensional representations of the group. 
Inserting the trivial representation, the character table looks the table below. 
 

C3 e  r  r2 
D 1( ) 1 1 1 
D 2( ) 1   
D 3( ) 1   

 
It to find the remaining pieces we use the fact that the characters of 1-dimensional 
representations are the representations themselves. Thus we know that 
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D 2( ) r( )( )3
=1

⇒ D 2( ) r( )= e iθ  and e i2θ
 

where θ = 2π
3

. 

 
C3 e  r  r2 
D 1( ) 1 1 1 
D 2( ) 1 e iθ  ei2θ  
D 3( ) 1 ei2θ  e iθ  

 
At this point it is also important to notice that e i2θ = e−iθ  and thus we can again write the 
character table as 
 

C3 e  r  r2 
D 1( ) 1 1 1 
D 2( ) 1 e iθ  ei2θ  
D 3( ) 1 e−iθ  e−i2θ  

 
Now let’s consider the three-dimensional Euclidean vector space V = R3 and the standard 
basis. If we wish to consider C3 as rotations about the z-axis, we already know how to 
write one such three dimensional representation, DV . 

DV e( )=
1 0 0

0 1 0

0 0 1

 

 

 
 
 

 

 

 
 
 
,DV r( )=

−1
2

3
2

0

3
2

−1
2

0

0 0 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

,DV r2( )=

−1
2

3
2

0

− 3
2

−1
2

0

0 0 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 

From this we can we see that χV = 3,0,0{ }  with respect to the basis of β = e,r,r2{ } in 

group space. Dotting this with the three basis vectors χ 1( ) , χ 2( ) , χ 3( )  it should be clear 

that χV = χ 1( ) + χ 2( ) + χ 3( ) . From this we now know that DV = D 1( ) ⊕ D 2( ) ⊕ D 3( ). 

 
We now need to assign a basis vector to each dimension of each irreducible 
representation that makes up DV . For example, knowing that we want the z-axis fixed 
under this group we can assign the basis γ = φ1 x,y,z( )= z,φ2 x,y,z( )= x,φ3 x,y,z( )= y{ }  

for D 1( ),D 2( ),D 3( ), respectively. We now observe what a group element does to each of 
these vectors. 
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D 1( ) r( )φ1 x,y,z( )=1⋅ z = z

⇒ ′ z → z

D 2( ) r( )φ2 x,y,z( )= e iθ x

⇒ ′ x → e iθ x

D 3( ) r( )φ3 x,y,z( )= e−iθ y

⇒ ′ y → y

 

In the standard basis of x =
1

0

0

 

 

 
 
 

 

 

 
 
 
,y =

0

1

0

 

 

 
 
 

 

 

 
 
 
,z =

0

0

1

 

 

 
 
 

 

 

 
 
 

 

 
 

 
 

 

 
 

 
 

, we now have that 

DV r( )=
e iθ 0 0

0 e−iθ 0

0 0 1

 

 

 
 
 

 

 

 
 
 
 

and similar construction will yield the other two elements. 
 
Something a little bit more fancy might be to use the basis that will give us the rotation 
matrices we are used to seeing. Out of thin air we find and then decide to use the basis 
γ = z,x + iy,x − iy{ } . Now we have 

D 1( ) r( )φ1 x,y,z( )=1⋅ z = z

⇒ ′ z → z

D 2( ) r( )φ2 x,y,z( )= e iθ x + iy( )
= cosθ + isinθ( ) x + iy( )
= x cosθ − y sinθ( )+ i x sinθ + y cosθ( )

 

and the last term is in the form x + iy  denoting that 
′ x → x cosθ − y sinθ
′ y → x sinθ + cosθ

 

The basis we chose for D 3( ) yields the same result as D 2( ). We have determined the 
components of DV r( ) in this new basis, namely, 

DV r( )=
cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 

 

 
 
 

 

 

 
 
 
. 

 
Example 4 
It can be shown that the character table for Cn  where ξ n denotes the nth root of 1, is the 
following: 
 

Cn  e  r  r2 ��� rn−1 
χ 1( ) 1 1 1 ��� 1 

χ 2( ) 1 ξ  ξ 2 ��� ξ n−1 
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χ 3( ) 1 ξ 2 ξ 3 ��� ξ 2 n−1( ) 

��� ��� ��� ��� ��� ��� 
χ n( ) 1 ξ n−1 ξ 2 n−1( ) ��� ξ n−1( )2

 
 
So now if you’ll notice, the character in the nth representation is the complex conjugate of 
the character in the 2nd representation. It turns out that the direct sum of D 1( ) ⊕ D 2( ) ⊕ D n( ) 
in the basis z,x + iy,x − iy{ }  will give you the following representation, 

DV rn( )=
cosnθ( ) −sin nθ( ) 0

sin nθ( ) cosnθ( ) 0

0 0 1

 

 

 
 
 

 

 

 
 
 
 

This is, of course, pretty dang cool and should be relatively clear given the last example 
we worked out in more detail. 
 
 
 

§ Chapter 3: Infinite Rotational Group 
 
3.1 Introduction 
 
The object now is to examine the three-dimensional rotation group, commonly denoted 
by SO 3( ) -- the Special Orthogonal group of three dimensions and determinant 1. The 
idea here is to look at this group the same way we looked at the other simpler groups, 
such as C3, by finding the representations and their characters of the group. Ultimately, 
because this group is infinite, it will prove to be much more difficult to achieve our goals. 
However, there are many rewards that we will pick up along the way. 
 
3.2 Generators 
 
Often groups are defined in terms of their generators such as the dihedral-3 group 
D3 = x,y x3 = e,y 2 = e = e,x,x2,y,yx,yx2{ } where x  and y  are the generators of the 

group. We will now try to find the generators of SO 3( ). We use the notation R α ,ξ( ) to 
denote the rotation by α  about the ξ  axis. Iξ  represents an infinitesimally small rotation 

about the ξ  axis. From basic calculus, we know that 

Iξ = lim
x→0

R α,ξ( )− R 0,ξ( )
α

 

 
 

 

 
 =

dR α ,ξ( )
dα α =0

. (2.1) 

This is great, but there are two things to note at this point. First, as a matter of convention 
and convenience we will denote the above limit by iIξ  instead of Iξ . Second, note that 

R 0,ξ( ) is actually just the identity matrix, i.e., we don’t rotate at all. We now have 

iIξ = lim
x→0

R α ,ξ( )− I

α
 

 
 

 

 
  
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where I represents the identity matrix. Rearranging the above equation, for small α  we 
can write 

R α,ξ( ) ≈ I + iaIξ . 

Here’s a little bit of trickery: to rotate by angle α  we now rotate by 
α
n

 a total of n times. 

Hence, 

R α,ξ( )= R
α
n

,ξ
 
 
 

 
 
 

 

 
 

 

 
 

n

≈ I + α
n

iIξ
 
 
 

 
 
 

n

. 

If we take this limit we no longer have an approximation. 

R α,ξ( )= lim
n →∞

I +
αiIξ

n

 

 
 

 

 
 

n

=
αiIξ( )n

n!
=

n=0

∞

∑ eαiIξ

 

The last step follows from the definition of the exponential function from calculus. Great. 
So now we have a way rotation about an axis in terms of the operator Iξ . But just what is 

this operator and what does it look like in the standard basis for R3? As you intuitively 
suspect, we can represent Iξ  in terms a linear combination of Ix , Iy  and Iz. The rotations 

about the x, y and z axis can be represented by 

R α,z( )=
cosα −sinα 0

sinα cosα 0

0 0 1

 

 

 
 
 

 

 

 
 
 

R α,y( )=
cosα 0 sinα

0 1 0

−sinα 0 cosα

 

 

 
 
 

 

 

 
 
 

R α,x( )=
1 0 0

0 cosα sinα
0 −sinα cosα

 

 

 
 
 

 

 

 
 
 

 

 
From equation 2.1 we can find the infinitesimal rotations for this representation 

iIx =
0 0 0

0 0 1

0 −1 0

 

 

 
 
 

 

 

 
 
 
,iIy =

0 0 1

0 0 0

−1 0 0

 

 

 
 
 

 

 

 
 
 
,iIz =

0 −1 0

1 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 
 

Ix =
0 0 0

0 0 −i

0 i 0

 

 

 
 
 

 

 

 
 
 
,Iy =

0 0 −i

0 0 0

i 0 0

 

 

 
 
 

 

 

 
 
 
,Iz =

0 i 0

−i 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 
. 

Now we can writeIξ  in terms a linear combination of Ix , Iy  and Iz, Iξ = aIx + bIy + cIz .  

From inspection of the coordinate system we can determine the missing coefficients 
(Heine, 53). If θ  is the angle of the ��

&�
ξ  vector from the z-axis down to the x-y plane and φ 
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is it angle from the x-axis, then Iξ = sinθcosφIx + sinθsinφIy + cosθIz . We have now 

completed the first of our goals. We can write any rotation in R3 in terms of the three 
generators Ix , Iy  and Iz. 

 
3.3 Commutation Relations 
 

The next thing that is useful to consider is the commutations between the three 
generators. It should be pretty intuitively clear the three operators don’t commute. The 
simplest method for determining the commutation relations is to just calculate them using 
the representations from above. We could look at the general case, but this representation 
works just fine too. 

Ix,Iy[ ]= IxIy − IyIx

=
0 0 0

0 0 −i

0 i 0

 

 

 
 
 

 

 

 
 
 
⋅

0 0 −i

0 0 0

i 0 0

 

 

 
 
 

 

 

 
 
 
−

0 0 −i

0 0 0

i 0 0

 

 

 
 
 

 

 

 
 
 
⋅

0 0 0

0 0 −i

0 i 0

 

 

 
 
 

 

 

 
 
 

=
0 0 0

1 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 
−

0 1 0

0 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 
=

0 −1 0

1 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 

= iIz

 

If we use this same procedure we can find the two other relations, 
Ix,Iy[ ]= iIz

Ix,Iz[ ] = −iIy

Iy,Iz[ ]= iIx

 

These relations turn out to be somewhat useful later. Otherwise they are said to define an 
algebra, whatever that means… 
 
3.4 The Irreducible Representations 
 

If you recall from the last chapter, when we were trying to find the irreducible 
representations of some group we looked for invariant subspaces of the group. We looked 
for subspaces, Vn , that contained no proper group invariant subspaces. A set of basis 
vectors of Vn  could be used to make that particular irreducible representation of that 
group. Our approach is going to be the same here. We are going to search for the basis 
vectors of subspace invariant under the full rotation group. Because any element of the 
full rotation group can be represented by a linear combination of the three generators, we 
will use the generators to find the invariant subspaces. 
 A very nice set of vectors to work with, are the eigenvectors of the rotation 
operators. However, from the commutation relations, we know that the generators cannot 
have simultaneous eigenvectors. By convention we will work with the eigenvectors of the 
Iz operator. Let’s start by working in some finite n-dimensional subspace Vn  that we 
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assume is group invariant. We can now assume that Iz has a least one eigenvector in Vn , 
let’s denote it by Iz m = m m . 
 Let’s see if we can find the other eigenvectors of Iz. The recommend way of 
doing this is to create an operator, call it S, that moves from the one eigenvector that we 
know exists, m , to the other eigenvectors Iz. Symbolically we want 

S Iz S m( )= λ S m( ){ }. Amazingly, just by examining the commutation relations we can 

determine what S actually has to be. Using m  as our test function, 
IzS m − SIz m

= λS m − mS m

= λ − m( )S m

 

From which we see that Iz,S[ ] = kS  for some k . Of course, everything in the group can 

be written as a linear combination of the generators, so we can write S = aIx + bIy + cIz . 

Let’s try the commutation relation one more time. 
Iz,S[ ] = IzS − SIz

= Iz aIx + bIy + cIz( )− aIx + bIy + cIz( )Iz

= aIzIx + bIzIy + cIzIz − aIxIz −bIyIz −cIzIz

= a IzIx − IxIz( )+ b IzIy − IyIz( )
= a iIy( )+ b −iIx( )
= −ibIx + iaIy

 

But since we know from above that Iz,S[ ]= k aIx + bIy + cIz( ), we can equate the 

coefficients. Doing this we find that c = 0, a = 1
k

−ib( ) and a = k −ib( ). The only values of 

k  that satisfy the relation k = 1
k

 are k = ±1. From this we now see that S = a Ix ± iIy( ). 
Letting a =1 we now denote the two S operators as I+ = Ix + iIy  and I− = Ix − iIy  with 

commutation relations Iz,I±[ ] = ±I± . 

 Let’s examine what I± do to the eigenvector m  of Iz. 

IzI± m = IzI± m

IzI± m = IzI± m + I±Iz m − I±Iz m

IzI± m = Iz,I±[ ] m + I±Iz m

IzI± m = ±I± m + mI± m

IzI± m = m ±1( )I± m

 

So it seems that I+ moves the eigenvector m  to an eigenvector with an eigenvalue 1 
higher. Let’s write this as I+ m = cm m +1  where the constant cm  is yet to be 
determined. Similarly, I−  lowers the eigenvector. This is a little bit of a problem because 
we want to deal with finite vector spaces, so we can just arbitrarily say that the m = j  
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vector is the last one and thus I+ j = 0. At this point it’s thus probably good to change 
our notation a little and write our vectors as j,m  so we know that we can only raise m  
up to j  before we’re done and hit the wall. 
 We need to take care of one thing that will soon be useful. We need to determine 
I+,I−[ ]. 

I+,I−[ ] = I+I− − I−I+

= Ix + iIy( ) Ix − iIy( )− Ix − iIy( ) Ix + iIy( )
= IxIx − iIxIy + iIyIx + IyIy − IxIx − iIxIy + iIyIx − IyIy

= −2i Ix,Iy[ ]
= 2Iz

 

 
Given that I+ m = cm m +1 , we will similarly define I− m = dm m −1 . Let’s see how 
cm  and dm +1 relate. 

m −1 I+ m = m cm m = cm

m I− m +1 = m dm +1 m = dm +1

⇒ cm = dm +1

 

Now we’re set to determine cm . 

I+ m −1 = I+
1

dm

I− m
 

 
 

 

 
 =

1
dm

I+I− m

= 1
dm

I−I+ + 2Iz( )m

= 1
dm

I−I+ m + 2Iz m( )

= 1
dm

dm +1cm + 2m( )m

 

but we also know that I+ m −1 = cm−1 m . Setting the component equal we see that 
1
dm

dm +1cm + 2m( )= cm−1. 

1
dm

dm +1cm + 2m( )= cm−1

⇒ 1

cm−1

cm
2 + 2m( )= cm−1

⇒ cm
2 + 2m = cm−1

2

 

We’re almost there! We now have a recursive equation that establishes the missing 
coefficients. Solutions to this type of equation are often solved in numerical analysis 
books, see Stegner’s Diskrete Strukturen for example of this. We start by substituting 
cm

2 = bm  and reducing it to a linear equation. Now, 
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bm−1 = bm + 2m

⇒ bm−1 −bm −2m = 0

⇒ bm −bm +1 −2 m +1( )= 0

 

The difference of these last two equations gets rid of that pesky m . 
bm−1 −bm −2m = 0

−bm + bm +1 + 2m + 2 = 0

bm−1 −2bm + bm +1 + 2 = 0

 

Now we just need to get rid of the 2, so we use the same process one more time. 
bm−1 −2bm + bm +1 + 2 = 0

−bm + 2bm +1 −bm +2 −2 = 0

−bm +2 + 3bm +1 − 3bm + bm−1 = 0

 

Finally we can write and solve the characteristic equation for the recursion. 
λ3 − 3λ2 + 3λ −1= 0

⇒ λ −1( )3 = 0
 

Thus closed form solutions to the recursion take the form 
bm =αm21m + βm1m + γ1m  

or simply, 
bm =αm2 + βm + γ . 

with still to be determined coefficients α , β  and γ. To determine these coefficients we 
can plug in the first three iterations of the recursions. We know that we b j = 0 because 

that’s to be the end of the ladder. Thus, 
b j−1 = b j + 2 j

⇒ b j−1 = 2 j
 

Similarly, 
b j−2 = b j−1 + 2 j −1( )
⇒ b j−2 = 2 j + 2 j −2

⇒ b j−2 = 4 j −2

 

We can write that, 
b j =αj 2 + βj + γ = 0

b j−1 =α j −1( )2 + β j −1( )+ γ = 2 j

b j−2 =α j −2( )2 + β j −2( )+ γ = 4 j −2

 

Three equations and three unknowns can be easily solved. In matrix form, 
j 2 j 1

j −1( )2
j −1 1

j −2( )2
j −2 1

 

 

 
 
 

 

 

 
 
 
⋅

α
β
γ

 

 

 
 
 

 

 

 
 
 
=

0

2 j

4 j −2

 

 

 
 
 

 

 

 
 
 
 

From which it easily determined that α = −1, β = −1 and γ = j j +1( ). Thus, 
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bm = −m2 − m + j j +1( )
⇒ bm = j j +1( )− m m +1( )
⇒ cm = j j +1( )− m m +1( )

 

We can use the exact same process to determine the coefficient for the I−  operator acting 
on an eigenvector of Iz. Our final results are thus, 

Iz j,m = m j,m

I+ j,m = j j +1( )− m m +1( ) j,m +1

I− j,m = j j +1( )− m m −1( ) j,m −1

 

From this we can see that not only does I+ j, j = 0, but I− j,− j = 0. So it would seem 
that for some value of j , m  can take on values ranging from j  to − j . Thus for some 
value of j  there are 2 j +1 eigenvectors of Iz. Because we’re working in some n-
dimensional vector space and n is a whole number, this places a limit on what values j  
can assume. 

n = 2 j +1

⇒ j = n +1
2

 

So it seem that j  can assume any half-integer value, j = 1
2

,1,
3
2

,…. 

 
So what have we done? We have found what the irreducible representations of the 
rotation group look like using the eigenvectors of Iz as a basis. Right now we have 
everything in terms of Iz, I+ and I− , but because we know how I± relate to Ix  and Iy , we 

can easily recover their form. Also remember that because we can writeIξ  in terms a 

linear combination of Ix , Iy  and Iz, we have the irreducible representations of and 

arbitrary rotation Iξ . Let’s explicitly write out the first two irreducible representations for 

I+, I− , Ix , Iy  and Iz, 

 

For the j = 1
2

 representation we have two eigenvectors of Iz, 
1

2
,
1

2
 and 

1

2
,−1

2
. With 

respect to those as an ordered basis we can now write, 

Iz = 1
2

1 0

0 −1

 

 
 

 

 
 ,I+ =

0 1

0 0

 

 
 

 

 
 ,I− =

0 0

1 0

 

 
 

 

 
 . 

We also know that Ix = 1
2

I+ + I−( ) and Iy = 1
2i

I+ + I−( ), thus 

Ix = 1
2

0 1

1 0

 

 
 

 

 
 ,Iy = 1

2i

0 1

−1 0

 

 
 

 

 
  

 
For the j =1 representation we have the three eigenvectors 1,1, 1,0 , 1,−1{ }  forming 

basis. Thus, 
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Iz =
1 0 0

0 0 0

0 0 −1

 

 

 
 
 

 

 

 
 
 
,I+ =

0 2 0

0 0 2

0 0 0

 

 

 
 
 

 

 

 
 
 
,I+ =

0 0 0

2 0 0

0 2 0

 

 

 
 
 

 

 

 
 
 

Ix = 1

2

0 2 0

2 0 2

0 2 0

 

 

 
 
 

 

 

 
 
 
,Iy = Ix = 1

2i

0 2 0

− 2 0 2

0 − 2 0

 

 

 
 
 

 

 

 
 
 

 

 
3.5 Characters of the irreducible representation 
 
Just as we did in the last chapter, we can compute the characters of the irreducible 
representations. Finding the characters, as you recall, is very useful in determining which 
irreducible representations compose the reducible representation. 
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