
Rational Numbers 
• There are four standard arithmetic operations: addition, subtraction, 

multiplication, and division. 
• Just as we took differences of natural numbers to represent integers, here the 

essence of the process is to use ordered pairs representing quotients. 
• (2,3), (8,12), (-50, -75), and (1000, 1500) will all represent the same object. 

 
Definition: Let a,c ∈  , and let b, d ∈   /{0}.  We say that (a, b) is related to (c,d), 
written (a,b) # (c,d) if ad = bc. 

• Intuition: This expresses what we would like a/b = c/d (a, b) # (c,d) if a/b and c/d 
represent the same natural number. ad = bc. 

 
Proposition: # is an equivalence relation. 
 Proof: Reflexive Property  

For any a,b ∈   with b ≠ 0 
ab = ab, so (a,b) # (a,b) 

Symmetric Property –  
 Suppose that (a,b) # (c,d) so that ad = bc 

cb = da so by the commutivity of 
(c,d) # (a,b) 

  Transitive Property –  
   Suppose that (a,b) # (c,d) and (c,d) # (e,f) 
   where a,c,e ∈   and b,d,f ∈   /{0} 

Then ad = bc and cf = de and thus  
afd = adf = bcf = bde = bed 
Since d ≠ 0 we can deduce af = be by cancellation of 
af = be and thus (a,b) # (e,f) 

     
 � 

• Define the set of rational numbers to be the set of equivalence classes under #. 
 
Example: 

The set {(a, b): a, b ∈  , b≠0, b = 2a} is an equivalence class. (The class 
determined by (1,2).) 

• Let us denote the equivalence class determined by (a, b) by a/b.  What we intend 
is that a/b should be the rational number that we intuitively think of as a/b. 

• This construction of the rationals is modeled on that of the integers so as to 
emphasize the analogy.  The construction of the integers involved introducing 
‘additive inverses’ for the natural numbers, and now the construction of the 
rational numbers involves the introduction of ‘multiplicative inverses’ for the 
non-zero integers.  We must also introduce other new objects; besides requiring 
rational numbers of the form 1/b (b∈ , b≠0) we also have rations of the form a/b 
which cannot be reduced (by cancellation) to a fraction with numerator 1. 

• So far we have only a set.  Now we must describe the operations of addition, 
multiplication, subtraction, and division, to investigate the natural order of the 



rational numbers, and to examine the way in which the newly defined set of 
rational numbers contains the set of integers. 

  
Definition: Addition and Multiplication of rational numbers are defined as follows.  Let 
a, b, c, d ∈  ,  with b≠0, d≠0. 
 a/b + c/d = (ad+bc)/bd 
 a/b * c/d = ac/bd 
 
Some properties of rational numbers –  
 
Proposition: Multiplication in the rational numbers is well-defined.   
 Proof: Suppose that a/b = p/q and c/d – r/s. 
  Show that ac/bd = pr/qs ( (ac, bd) # (pr, qs), acqs = bdpr) 
  a/b = p/q thus aq = bp and c/d = r/s thus cs = dr 
  acqs = bdpr 
  (ac, bd) # (pr, qs) 

ac/bd = pr/qs   
� 

 
Proposition: Addition in the rational numbers is well-defined. 
 Proof: Left to the reader 
 

• If a/b is a rational number, and x is a non-zero integer, then ax/bx = a/b. (axb = 
bxa and thus (ax, bx) # (a, b)) 

 
Proposition: Addition and Multiplication of rational numbers are commutative and 
associative, and the distributive law holds. 

Proof: These results are easy consequences of the corresponding properties of 
integers. 

 
Proposition:  There are rational numbers that behave like zero and one.  For any a, b ∈  , 
with b ≠ 0, we have: a/b + 0/1 = a/b, a/b * 1/1 = a/b, a/b * 0/1 = 0/1. 

Proof: Proofs incorporate the definitions and properties of natural numbers. 
• Thus 0/1 behaves like zero in the natural numbers, 1/1 behaves like one, and for 

any non-zero b, b/b = 1/1. 
 
Proposition: For any a, b ∈  /{0}, we have a/b * b/a = ab/ab = 1/1. 
 Proof: Also follows from the definition of multiplication. 
 

• Thus b/a is a multiplicative inverse of a/b, this enables us to introduce the 
operation of division.  Division by a/b in the rationals is defined to be the same as 
multiplying by b/a (if and only if a≠0).  Thus we can only divide by non-zero 
numbers. 

• Additive inverses are straightforward.  For a, b ∈  , with b ≠ 0 we have             
a/b ± (-a)/b = (ab – ab)/b2 = 0/b2 = 0/1.  Hence we may write –(a/b) for (-a)/b. 
Observe that (-a)/b = a/(-b). 



• Subtraction: For a, b, c, d ∈  , with b ≠ 0, d ≠ 0, let a/b – c/d stand for                    
a/b + (-(c/d)). 

• We denote the set of rational numbers by .  
• From the above, it can be shown that the set of rationals for a field uner ‘+’ and 

‘*’. 
 
Definition: The order relation on  is defined as follows. We say that an element a/b of   
is positive if ab > 0, where ab is an integer. 
 
Proposition: Order relation on  is well defined. 
 Proof: Suppose that a/b = c/d and a/b is positive. 
  Then ad = bc and ab > 0.  It follows that  
  cdb2 = bcbd = adbd = abd2. 
  Since b2 > 0, d2 > 0 and ab > 0, we must have cd > 0. 

� 
Definition:  Let + denote the set of positive rational numbers.  Now define < on  by : 
 x < y if y-x ∈   +. 

 
• The definition of t is now just as one would expect. 

 
Theorem: 
1.  Given x ∈   , one of the following holds: 

x ∈   + 
x = 0 
–x ∈   + 

2.  If x, y ∈   +, then x + y ∈   + and xy ∈  +. 
Proof:  Left to the reader. 

 
Theorem:  The natural ordering of  is dense, i.e. given x, y ∈  with x < y, there is a     
z ∈   such that x < z and z < y. 
 Proof: Let x,y ∈  with x < y.  Take z = (x+y)/z.  Then z – x = (y-x)/z ∈  +.  
  Also y-z = (y-x)/z ∈   +.  We have, therefore, x < z and z < y. 

� 
Real Numbers 

• We only need to use the properties of an integral domain in order to construct the 
reals from the rationals.  We will denote the set of rationals by R. 

 
Proposition: There is no rational number whose square is 2. 
 Proof: Let m.n be a rational number such that (m/n)2  = 2. 

Take ma nd n to be relatively prime integers (they have no common 
factors exceeding one.) 
(m/n)2 = 2 m2/n2 = 2 m2 = 2n2, hence m2 is even, and thus m is 
even.  Write m = 2p for some integer p.   
Thus (2p)2 = 2n2 4p2 = 2n2 2p2 = n2 



hence, n2 is even and thus n is even and can be written as n = 2q for some 
integer q.  Thus, m and n have a common factor of 2, contrary to the 
assumption that m and n are relatively prime. Thus there is no rational 
number whose square is 2. 

� 
Construction of the Real Numbers –  
Definition: A Dedekind Cut is a subset α of R such that 

a) α ≠ ø and αc ≠ ø (where αc ≠  R - α) 
b) r ∈α , s ∈  R and r < s imply s ∈  α and 
c) α does not have a minimum. 

 
• Let R denote the set of all cuts. 

 
Definition: A rational cut based on r0 is the set {r : r ∈  R and r > r0}. 
 
Definition:  An irrational cut is any member of R that is not of this form. 
 

• A cut is rational if and only if its compliment has a maximum. 
• Special instances of the rational cuts are the zero cut θ and the unit cut δ 

o θ = { r : r ∈  R and r > 0} 
o δ = { r : r ∈  R and r > 1} 

 
Example: γ = { r : r ∈  R, r u 0 ,  and r2 > 2} is a cut. 

a) γ is non-empty since s ∈  γ, γc is non-empty since 1 is not in γ 
b) Does r < s imply s ∈  γ ? Since r2 > 2, s > r implies s2 > 2, so s ∈  γ. 
c) Show that γ has not minimum 

Let s = (2r + 2)/(r+2).  Since r u 0, s u 0; 
s2 – 2 = (2r + 2 / r + 2)2 = (sr + 2)2/(r+2)2 – 2 = 2(r2 – 2)/(r+2)2.   
Since r2 > 2; s2 – 2 > 0, so s2 > 0.   
Thus s ∈  γ, but  
s – r = (2r + 2)/(r+2) – r(r+2)/(r+2) = (2 - r2)/(r + 2) < 0. 
Thus s < r and γ does not have a minimum, and thus γ is a cut. 

d) Show that γ is irrational 
To show that γ is an irrational cut we must establish that γc does not have a 
maximum. 

� 
• For any cut α, s ∈  αc and r < s imply that r ∈  αc. 
• If s ∈  αc and t ∈α , then s <t.  Although t must exceed s, it is possible to chose s 

and t as near as is desired. 
 
Order –  

• Order in R is defined in terms of set inclusion.  Thus for cuts α and β we write     
α t β if and only if β � α. 

 
 



Proposition: t is a linear order. 
 Proof:  α t α since α � α. 
  Since β � α, and γ � β γ � α , α ≤ β and β ≤ γ ⇒  α ≤ γ. 
  Since β � α and α � β imply that α = β, α ≤ β and β ≤ α ⇒  α = β. 

To establish linearity of the order, suppose that α ≠ β. 
Without loss of generality, we can assume that there is an r such that r ∈  α 
and r ∉  β, so r ∈  βc.  If s ∈  β, then r < s so that s ∈  α; β � α, so α ≤ β. 

� 
 

• A nonempty subset of R that is bounded below has an infimum. (Proof omitted) 
 
Addition –  
 
Definition: The sum of members α and β of R is defined to be  
 α + β = { r + s : r ∈  α and s ∈  β}. 
 

• The sum of two cuts is the set of all sums of rational numbers that can be formed 
by adding a member of α to a member of β. 

 
Proposition - α + β is a cut. 
 Proof:  

a) Show α + β and (α +β)c are non-empty 
a. α + β is non-empty since both α and β are non-empty 
b. Let r1 ∈  αc and s1 ∈  βc. Assume that r1 + s1 ∈  α + β, and derive 

a contradiction.  For some r2 ∈  α and some s2 ∈  β, r + s1 = r2 + 
s2, but r1 < r2 and s1 < s2 by definition. This is impossible, thus 
(α + β)c is non-empty. 

b) Show u ∈  α + β and u < t ⇒  t ∈  α +β.  Let r ∈  α, s ∈  β and r + s < t.        
t = r + ( t – r ) , so s < t – r, thus t – r ∈  β, and t ∈  α + β, u ∈  α + β and 
u < t ⇒  t ∈  α + β. 

c) Show α + β has no minimum.  Let r + s ∈  α + β with r ∈  α and s ∈  β, 
so there exists a t ∈  α with t < r.  (Since α has no minimum.)             
Thus t + 2 ∈  α + β and t + s < r + s, so α + β has no minimum. 

From a, b, and c we see that α + β is a cut. 
 

• The sum of rational cuts based on a and b respectively, is the rational cut based on 
a + b. 

• α  + β = β + α 
• α  + ( β + γ) = (α + β) + γ 
• The previous two rules are consequences of the definition of sum and properties 

of rational numbers. 
 
 
 



Theorem: α + θ = α 
Proof: Let r ∈  α + θ, so r = s + t for s ∈  α and t ∈  θ.   

Thus s < s + t, so s + t ∈  α.   
Thus α + θ � α.  
Let r ∈  α, there is some s ∈  α such that s ≤ r.  
Thus r = s + ( r – s ) and r – s > 0, r  ∈  α + θ. So α � α + θ.  
Thus α = α + θ. 

� 
 
Definition: The negative -α of a cut α is defined to be the set of all rational numbers r 
such that –r is in αc is not the maximum of that set (if such a maximum exists.  In 
symbols: 
 -α = { r : -r ∈  αc and –r ≠ max αc } 
 
Proposition: -α is a cut. 
 Proof: Omitted. 
 
Theorem: α + (-α) = θ. 
 Proof: Let r ∈  α and s ∈  -α, then  

-s ∈  αc, -s < r, o < r + s, r + s ∈  θ, so α + (-α) � θ. 
Let r be a member of θ so that r > 0. ∃  t1, t2 ∈  R such that t1 ∈  αc, t2 ∈  α 
and 0 < t1 – t2 < r. W.L.O.G. assume t1 is not the largest member of αc.   
-t1 ∈  - α so t2 – t1 ∈  α + (-α). 
t2 – t1 < r ⇒  r ∈  α + (-α), hence θ � α + (-α) 

� 
 
Theorem: α ≤ β implies α + γ ≤ β + γ 
 Proof: α ≤ β ⇒  β � α 
  γ + γ � α + γ ⇒  α + γ ≤ β + γ. 

� 
 

• So far, we have shown that R has an additive identity, additive inverse, is 
associative and commutative under addition, and is linearly ordered. 

 
Multiplication –  
 
Definition: Let R’ – { α : α ≥ θ }. The product αβ of members α and α of R’ is defined to 
be the set 

αβ = { r : r ∈  α and s ∈  β } 
 

• αβ  is a cut (Proof similar to that of α + β). 
 

• Multiplication in R’ is commutative and associative. i.e. αβ = βα for α, β ∈  R’. 
α(βγ) = (αβ)γ for α, β, γ ∈  R’. 



 
Theorem:  δ (the unit cut) is the multiplicative identity, i.e. αδ = α for α ∈  R’. 

Proof: Let r ∈  α and s ∈  δ, then r < rs, rs ∈  α, αδ � α.  
Let r ∈  α, then ∃  u ∈  α such that u < r. 
Since α is non-negative, u is positive, u-1 exists. 
1 < ru-1 so ru-1 ∈δ . r = u(ru-1), r ∈  αδ. 
Thus, α � αδ. 

� 
 
Multiplication interacts properly with addition and order – 

• α  ( β + γ ) = αβ + αγ for α, β, γ ∈  R’. 
 
Proposition: α ≤ α ⇒  αγ ≤ βγ for α, β, γ ∈  R’. 
 Proof: If α ≤ β, then β � α so that βγ � αγ, hence, αγ ≤ βγ. 
 
Definition: The inverse α-1 of a positive cut α is defined to be the set 
 α-1 = { r : r > 0, r-1 ∈  αc, and r-1 ≠ max αc} 

 
• α -1 is a positive cut 

 
Theorem: αα -1 = δ for any α > θ. 
 Proof: Omitted. 
 

• This construction of multiplication on the set of non-negative cuts can be 
extended to all of R. 

• R is a complete ordered field. 
• The set of rational cuts is the rational subfield of R and is isomorphic to the set of 

rational numbers.  The irrational cuts are the irrational numbers. 


