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I. Field Extensions (brief review – see handout from class (4-8))

(not explained, just displayed for quick reference)
A. (defn) F|K is a field extension where K is a subfield of F (K ≤ F)
B. (defn) A finite field is any field having only finitely many elements.
C. (defn) Let F be an extension field of K and b an element of F. We say b is algebraic over K if b is the root

of some non-zero
polynomial with coefficients in K. WLOG assume the polynomial is monic, say xn + an−1xn−1+ . . . + a1

x1+ a0 .
D. (defn) With F!K, the K-dimension of F is the degree of the extension

II. Splitting Field
A. (defn) Let F|K be an extension of finite degree and p∈K[x]. Then F is the splitting field of p over K iff F

= K (a1, a2, . . . ,am)
such that p = (x-a1)(x-a2) . . . (x-am) (Herman, 5).

B. Normality
1. (defn) a field extension F|K is called normal iff for every irreducible polynomial m(x) over K, either

m(x) has no root in F or
it splits into the product of linear polynomials over F (Herman, 5).

2. Proposition: every normal extension of finite degree is the splitting field of some polynomial (Herman,
5).

Pf: Let [F:K] be finite, then F = K(a, b, c, . . . , z) for elements a, b, c, . . . , z in F. Since their minimal
polynomials ma, mb, . . . , mz

are irreducible over K, one can use the definition of a normal field extension to show that they all split
into the product of

linear polynomials over F. Hence, F is the splitting field of mamb. . . mz.
3. Theorem: let K F and p = p0+p1x+ . . . +pn−1xn−1+x∈K[x]. If F is the splitting field of p over K, then

F|K is a normal extension.
Pf: not displayed, too difficult
Note: splitting field ==>normal (Herman, 5).

C. Separability
1. (defn) An irreducible polynomial f over a field K is separable over K if it has no multiple zeros in a

splitting field. This
means that in any splitting field, f, takes the form: k(t– a) . . . (t-an) where the ai are all different

(Stewart, 83).
2. (defn) (Logically) An irreducible polynomial over a field, K, is inseparable over K if it is not separable

over K
(Stewart, 83).

D. Solvability
1. (defn) We say that a group G is solvable if G has a series of subgroups {e} = H0 ⊂H1 ⊂H2 ⊂. . . ⊂Hk

= G such that,
for each 0 < i < k. H is normal in Hi and Hi+1|Hi is abelian.
Note: abelian groups are solvable as are dihedral groups and any group of order pn, where p is a prime

(Gallian, 556).
2. Theorem: A factor group of a solvable group is solvable

Pf: Suppose G has a series of subgroups {e} = H0 ⊂ H1 ⊂ H2 ⊂ . . .⊂ Hk = G, where, for each 0 < i
< k, H is normal in

Hi+1 and Hi+1|Hi is abelian. If N is any normal subgroup of G, then {e} = HoN|N⊂ H1N|N⊂ H2N|N⊂
. . .⊂ HkN|N = G|N is the

requisite series of subgroups that guarantees that G|N is solvable (Gallian, 557).
3. Theorem: Let F be a field of characteristic 0 and let a∈F. If E is the splitting field of xn–a over F, then

the Galois group
Gal(E|F) is solvable. (This makes sense intuitively and will be more logical after Galois Group

is formally defined.)
Pf: not displayed, long and tedious (Gallian, 556).
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III. Fundamental Theorem of Galois Theory
A. Let L:K be a field extension with Galois group G, which consists of all K-automorphisms of L. Let F be the

set of intermediate
fields M, and H be the set of all subgroups B of G. We have defined two maps,

π : F –>H
θ : H –>F

as follows: if M∈F, then π(M) is the group of all M-automorphisms of L. If B∈H, then θ(B) is the fixed field of
H (defined below).

We have observed that the maps π and θ reverse inclusions, that M≤ θ(π(M)), and H≤ π(θ(H)) (Stewart, 104).
(defn) Let E be an extension field of the field F. The Galois group of E over F, Gal(E|F), is the set of all

automorphisms of E
that take every element of F to itself (identity map). If H is a subgroup of Gal(E|F), the set E = {x∈E|π(x)

= x for all π ∈H}
is called the fixed field of H (Gallian, 548).

B. Fundamental Theorem: If L:K is a finite, separable, normal field extension of degree n, with Galois group G;
and if F, H, π, θ,

are defined as above, then:
1. The Galois group G have order n
2. The maps π and θ are mutual inverses and set up an order-reversing one-to-one correspondence between

F and H
3. If M is an intermediate field, then

[L:M] = |π(M)|
[M:K] = |G| / |π(M)|

4. An intermediate field M is a normal extension of K iff (M) is a normal subgroup of G (in the usual sense
of group theory)

5. and, If an intermediate field M is a normal extension of K, then the Galois group of M:K is isomorphic
to the quotient group

G|π(M) (Stewart, 104).
Pf (part 4.): We need a Lemma to aid us in this proof. We can use one from page 105 of I Stewart’s

Galois Theory. The
following is Lemma 11.2:
Lemma: Suppose that L:K is a field extension, M is an intermediate field, and t is a K-automorphism

of L. Then
π(t(M)) = t(π(M))t−1 .

Pf (lemma): Let M’ = t(M), and take y∈ π(M), x1 ∈M’. Then x1 = t(x) for some x∈M. Then
(tyt−1)(x1) = ty(x) = t(x) = x1

So that tπ(M)t−1 ≤ π(M’). Similarly t−1π(M’)t≤ π(M) and t π(M)t−1 ≥ π(M’). Hence, the
lemma is proved.

Pf (4.): If M:K is normal, let t∈G. Then t|m is a K-monomorphism M –> L, so is a K-automorphism
of M by Theorem 10.5

(Stewart, page 99) which states that for a finite extension L:K, it is equivalent to state that L:K
is normal and every

extension M of K containing L, every K-monomorphism, t:L –> M, is a K-automorphism of L.
Hence, t(M) = M. Using

our lemma, we know tπ(M)t−1 = π(M), so that π(M) is a normal subgroup of G (Stewart, 106).
C. (defn) The set of all automorphisms of F|K is a group if multiplication of automorphisms is defined as the

composition of
mappings; this group is denoted by Aut(F|K). If F|K is a normal extension of finite degree, this group is

called the Galois
group of F|K and is denoted by Gal(F|K) (Herman, 5).

D. Proposition: Let F|K be a normal extension of finite degree, then |Gal(F|K)| = [F:K] (Herman, 6).
Pf: A corollary is needed. We will use one from a handout written by Peter Herman, 2001.
Corollary: Assume [F:K] is finite. Then there exists some c∈F such that F = K(c) (Herman, 4).

Pf (corollary): omitted, involves theories involving symmetric polynomials (Herman, 5).
Sidebar: (defn) Let K be a field and f∈K[x1, x2, . . . , xn] (a polynomial of n variables). Then f is called

a symmetric
polynomial iff for any a∈Sn, f(x(1)a,x(2)a, . . . , x(n)a) = f(x1, x2, . . . ,xn) holds (Herman, 3).

2



Using the corollary, there is some a∈F satisfying F = K(a). The minimal polynomial ma(x) of a over K is
of degree n = [F:K]

and (as F|K is normal) splits into the product of linear polynomials over F. Let ma(x) = (x-a1)(x-a2) . . .
(x-an) = xn + `n−1xn−1 +

. . . + `0 with a1 = a and a1, . . . ,an pairwise different. Assume Gal(F|K); then
0 = (0) = π(an+ `n−1an+ . . . +`0)

= (π(a))n + π(`n−1)(π(a))n−1 + . . . +π(`1)π(a1) + π(`0)
= (π(a))n + `n−1(π(a))n−1+ . . . +`1(π(a)) + `0.

E. note: Let F|K be a normal extension of finite degree. We denote Gal(F|K) by G (Herman, 7).
1. For a subfield K≤L≤F set S(L) = {θ ∈ G| (any ` ∈L)θ(`) = `}
2. For a subgroup H≤G set (H) = {b∈F|(any n∈H)π(b) = b}.

F. Corollary: S(L)≤G, K≤ π(H)≤F, S(K) = G, S(F) = {e}, π({e}) = F. π(S(L)≥L and S(π(H))≥H. If
K≤L1 ≤L2 ≤F, then S(L1)≥S(L2)

and similarly, if H1 ≤H2 ≤G, then π(H1)≥(H2) (Herman, 7).

key:
defn= definition
dfn= define
iff= if and only if
pf= proof
s.t. = such that
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