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Abstract

We discuss elementary graph theory, focusing on topological graph theory. We then discuss
a type of topological surface known as a book. We define a graph, the net, based on Harary
and Guy’s Möbius ladder, and study its bookthickness. We then discuss two more methods of
representing graphs embedded onto closed surfaces: rotation systems and band decompositions.

1 Elementary Graph Theory

A graph G(V, E) is a set of vertices V and a set of edges E where each edge contains at most two
vertices. There are several ways of representing a graph. We could represent it as a list of vertices
and edges, or we could write the same information in a matrix, or we could draw vertices as dots and
edges as curves between them. In this paper, we will represent graphs by lists or drawings. For exam-
ple, Figure 1 shows the graph with vertices {a, b, c, d} and edges{{a, b}, {b, c}, {c, d}, {a, d}, {a, c}}.
The same graph can be drawn in multiple ways depending on how the drawer chooses to place dots
and place and draw edges. In all realizations of a graph, however, the same vertices are always
connected by the same edges.

A vertex is adjoined to an edge if it is one of the endpoints, and two vertices are adjacent if
there is an edge containing both of them. The number of edges attached to a given vertex is the
vertex’s degree. In the graph of Figure 1, vertex a has degree 3. If every vertex in a given graph
has the same degree, then that graph is said to be regular. When an edge connects one vertex
to itself, the edge is called a loop, and when two or more edges connect the same pair of vertices
to each other, we say they are multiple edges. A graph with no loops or multiple edges is called
simple. In general, properties belonging to simple graphs can be extended to graphs that are not
simple, and so it is common to restrain one’s interest (as we shall in this paper) to simple graphs
only.
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Figure 1: A graph

Some appealing families of graphs arise naturally. The most obvious is Kn, the complete graph
on n vertices. As its name suggests, this is the graph with n vertices, each of which is connected to
every other vertex by exactly one edge. K4 and K5 are pictured in Figure 2. Another interesting
type of graph is a bipartite graph. This is a graph whose vertex set can be partitioned into two
subsets such that every edge in the graph adjoins exactly one vertex from each set. In a complete
bipartite graph, every vertex in one subset is connected to every vertex in the other. The bipartite
graph in Figure 3 is K2,3, the complete bipartite graph with two vertices in one subset and three in
the other.

Figure 2: K4, K5

Figure 3: K2,3
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1.1 The Möbius ladder

There are many other common constructions of graphs, but we will only address one more at this
point: the Möbius ladder, designed by Guy and Harary in 1967 [7]. The Möbius ladder Mn is
defined to be the graph on n ≥ 5 vertices consisting of a cycle of length n where if n is even, each
vertex is connected to the one directly opposite it by a chord, or, if n is odd, to the two vertices
‘almost opposite’ it. This definition, which Guy and Harary used, is visually descriptive, but a
mathematical definition will be more helpful. In the even case, if we label vertices 0 through 2r−1,
edges adjoin numerically adjacent vertices, or vertices that differ by r (modulo 2r). In the odd case
with the same labelling, edges adjoin numerically adjacent vertices and vertices that differ by either
r or r + 1 (again, modulo 2r). Figure 4 depicts M8 and M9, the Möbius ladders on eight and nine
vertices, respectively.

Figure 4: M8 and M9

2 Introduction to Topology

2.1 Planarity

Some properties of graphs are not independent of how they are drawn. For example, many graphs
can be drawn in the plane in such a way that none of their edges intersect except at vertices. Such
a drawing is called a planar drawing; a graph is called planar if there exists a planar drawing of
it. A special type of planar graph is an outerplanar graph, which has an additional requirement
that the vertices must be embedded in a circle with all the edges interior to it and not crossing. An
outerplanar graph on n vertices can contain at most 2n − 3 edges: n of them form a cycle around
the circle, and the remaining n− 3 triangulate the interior. In lieu of a proof, see Figure 5 below.
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Figure 5: An outerplanar graph with the most possible edges on twelve vertices

Suppose we have a nonplanar graph G, and suppose that it is drawn (with crossing edges) on a
plane. A subgraph of a graph H is a graph that contains only vertices and edges from H. Notice
that every graph is a trivial subgraph of itself. It should be clear that we can find some subgraph
G′ of the planar nonplanar graph G that is planar if we delete enough edges from G. If we then
consider the remaining edges of G, we can find another planar subgraph G′′. By continuing until all
of the edges in G have been associated with a planar subgraph, we end up with a representation of
G as a sort of ‘stack’ of planar graphs. Now suppose we are not constrained to a particular drawing
of the original graph G on the plane, but are allowed to embed it however we wish. We can then
find an efficient way of dividing G up into the fewest number of planar subgraphs possible. This
number is called G′s thickness. Note that although we can draw G however we wish, we cannot
draw its subgraphs freely — when the subgraphs are super-imposed on one another their vertices
must lie on top of each other. Figure 6 demonstrates that K3,3 has thickness two, with the second
subgraph indicated by dashed lines.

Figure 6: K3,3 has thickness two

2.2 Higher genus surfaces

Let us consider a planar graph drawn on the plane again. A face is a region bounded by edges of the
graph (see Figure 7). There is an easily overlooked face to every planar graph — the infinite face
that is bounded by the graph’s outer edges. There is nothing special about the infinite face; any
face in the graph can be made into the infinite face by a redrawing. Consequently, it is reasonable
to think of that outer face as not being infinite at all. Suppose we did not draw our graph on the
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plane, but on a sphere instead. Then the area of the finite face would be finite, since the surface
of a sphere is finite. Any graph that can be drawn on the plane without edge crossings has a
two-cellular embedding onto the sphere, meaning that every face is a polygon. Notice that the
infinite face in an embedding onto the plane violates the two-cell requirement, because a polygon
with finitely many edges cannot have infinite area.

1

2

3
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f

f

Figure 7: The infinite face is not unique

Now let us consider a graph that cannot be cellularly embedded onto the sphere. Suppose we
can draw it in such a way that removing only one edge produces a planar drawing. If we could give
that edge a bridge to travel on over the rest of the graph, then it would not cross any other edges,
so let us imagine pulling a ‘handle’ out of the sphere and drawing the recalcitrant edge on it (see
Figure 8). Now we have a sphere with a handle sticking out of it; if we were to distort the sphere
portion we could make it look like a coffee cup. Instead, let us expand the handle until it is as big
as the rest of the shape. Now we have a donut; the arch under the handle became a hole in the
sphere. These three shapes are all in a way the ‘same’–we did not add, twist, or break anything, we
simply inflated or distorted it. In topological terms, we would say the shapes are homeomorphic1.

Figure 8: Deformations of the handled sphere

The sphere with a hole in it is called a torus. We can stick as many holes in a sphere as we like
(or add as many handles as we want) to create more surfaces. Graphs that cannot be embedded on
a torus can be embedded on a sphere with more holes. I should note that we are considering only

1This is why mathematicians joke that a topologist is a person who cannot tell a coffee cup from a donut.
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the surfaces of these various shapes, which is why we do not care what their volume or distortion
is — we are considering them as two-dimensional rather than three-dimensional objects.

If we have a surface with a two-cell embedding of a graph on it, we can determine its orientabil-
ity. A surface is orientable if it is possible to assign orientations (clockwise or counterclockwise) to
the polygonal faces of the graph embedded onto it such that if two faces share an edge, then the
faces induce opposite directions on that edge. So if one face is given a clockwise orientation, an
adjacent face must also have a clockwise orientation. The sphere is an orientable surface, as are
spheres with holes in them. Together, they form the family of all closed orientable surfaces, and we
call the sphere with g holes in it Sg, and call g the genus of the surface Sg.

There are also nonorientable closed surfaces. Consider the Möbius strip. If you have never seen
one before, it can be represented by taking a long strip of paper, twisting it, and taping the short
edges together. Now imagine that the paper is truly two-dimensional and thererfore is a surface
with no thickness, like a slice of a plane. The Möbius strip is, however, nonorientable, as we can see
from Figure 9 (the arrows indicate that the short sides should be glued with a twist). The blank
triangular face cannot be assigned an orientation. Notice also that the Möbius strip has one edge:
if you run a finger along the ‘top’, you will return back to where you started having traversed the
whole edge.

Figure 9: The Möbius strip is nonorientable.

Now consider again the sphere. Suppose this time we do not cut a hole all the way through it,
but instead cut a hole out of its surface. Now we have a disk missing, so let us patch it with a
Möbius strip by gluing its edge to the boundary of the missing disk. This is the nonorientable
surface with crosscap number one, and is written N1. If we cut k disks out of the sphere and
patch them with k Möbius strips, the resulting surface is called Nk and has crosscap number k.
It is extraordinarily difficult to picture even N1. Even the orientable surfaces, which are easy to
imagine and draw, become difficult to picture with graphs embedded onto them. Consequently, we
have developed several simpler ways of representing graphs embedded onto surfaces, one of which
we will discuss now and two of which we will examine in Sections 6 and 7.

2.3 Embedding graphs onto surfaces

We already know that when we want to embed a graph onto the sphere we can draw it on a plane
instead. More than that, we could draw it inside a rectangle.

6



Figure 10: K4 on the sphere.

Similarly, we can represent a torus as a rectangle, by identifying opposite edges. Think of taking
the two long sides and gluing them together to form a cylinder, and then gluing the two short sides
together to form a torus. Notice how edges that go ‘out’ one side come ‘in’ the opposite.

Figure 11: K5 on the torus.

A Klein bottle, the nonorientable surface with crosscap number one, can also be drawn as a
rectangle. This time, although we identify the same sides as we did for the torus, we put a twist on
the short sides — notice how an edge going out the top of the right sides comes in at the bottom
of the left.

Figure 12: K5 on the Klein bottle.
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Now that we can work more comfortably with some of these surfaces, we can consider another
property of graphs, their genus and their crosscap number. A graph is said to have genus g if it
has a two-cell embedding onto Sg but cannot be embedded onto Sk for every k less than g. In fact,
it is sufficient to say that the graph cannot be embedded onto Sg−1, because as we will discuss in
Section 5, the surfaces graphs can embed onto come in intervals of integers. That is, if there exist
two-cellular embeddings of G onto Sn and Sn+2 then there exists a two-cellular embedding of G
onto Sn+1. Similarly, a graph has crosscap number k if it can be embedded onto Nk but not Nk−1.

2.4 The Möbius ladder again

We conclude this section by returing to the Möbius ladder to see how planarity and genus apply
to it. In their paper, Harary and Guy proved the surprising fact that any Möbius ladder has genus
one. To do so, first they had to prove that it was not planar. K3,3 is known to be nonplanar,
and note from the solid lines on Figure 13 that every even-vertex Möbius ladder with six or more
vertices contains K3,3 as a subgraph. If a graph contains a nonplanar subgraph, then the graph
must be nonplanar. It is more difficult to show that every odd-vertex Möbius ladder with five or
more vertices are something called Kuratowski graphs, which follows from the fact that M5 is the
same as K5. Kuratowski graphs are nonplanar. Therefore, all Möbius ladders are nonplanar.

Figure 13: The Möbius ladder contains K3,3.

The more interesting part is proving that all Möbius ladders can be embedded in the torus.
Harary and Guy discovered the embeddings in Figure 14, which look like ladders that have been
twisted into Möbius strips. They both have exactly one edge crossing, which Harary calls being
“minimally nonplanar.” Consequently, adding exactly one handle to the sphere will remove all
crossings, and therefore all Möbius ladders can be embedded onto a torus. This is a surprising
result, since their geometric construction involved many crossings.
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Figure 14: Layouts for even and odd Möbius ladders.

3 Bookthickness

In 1979, Frank Bernhart and Paul Kainen wrote a paper called “The Book Thickness of a Graph,”
in which they proposed a new surface for graph embeddings [1]. This surface was called a book
because it could be visualized as several half-planes joined together along a line L, which looked
rather like several pages joined together along a spine. Graphs are embedded onto a book by
ordering their vertices along the ‘spine’ in some order σ and then drawing their edges either on
L, when the edge’s vertices are sequential in σ, or on exactly one of the half plane ‘pages’. The
question Bernhart and Kainen sought to answer in their paper was a natural one: how many pages
does a graph G require in order to be embedded in a book with no edge crossings? They termed
this number the graph’s book thickness, although it has also been called ‘bookthickness’ and is
now generally called ‘pagenumber’. In this paper, we will denote a graph G’s bookthickness by
bt(G).

3.1 Origin of the book

The three simplest results from Kainen and Bernhart’s paper are in the following theorem. A
connected graph is one in which any two vertices are connected by a sequence of adjacent edges,
none of which repeat, called a path.

Theorem 3.1 ([1], Theorem 2.5) Let G be a connected graph. Then
(i) The bookthickness of G is zero if and only if G is a path.
(ii) The bookthickness of G is less than or equal to 1 if and only if G is outerplanar.
(iii) The bookthickness of G is less than or equal to 2 if and only if G is a subgraph of a

Hamiltonian planar graph.

The first of these is obvious, because every edge can be embedded onto the spine and if the
spine contains all edges and is not disconnected, it therefore contains a path. The second follows
from an alternative representation of a book. Imagine one page of a book; we can imagine the spine
and page to be finite because we are not considering infinite graphs. Then we can bend the spine
around into a circle with all of the edges on the page in its interior. No space has been lost, and
no crossings have been forced. Therefore, every page of a book is, when taken with the spine, an
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outerplanar graph (see Figure 15). In a way, ‘bookthickness’ is a specific type of thickness, where
each subgraph has the additional restraint of being outerplanar.

Figure 15: A page of a book can be drawn two ways.

The third property follows from a well-known phenomenon of a type of graph called Hamiltonian.
A cycle is a path that begins and ends at the same vertex, and a cycle is called a Hamiltonian
cycle if it includes every vertex exactly once except for the starting vertex, which it includes twice.
A Hamiltonian graph is a graph containing a Hamiltonian cycle, and it has long been known
that in a planar graph the edges interior to a Hamiltonian cycle form one outerplanar subgraph,
and the edges exterior to the cycle form a second. The result (iii) follows immediately.

The next result is worth stating as a theorem, because it is so useful.

Theorem 3.2 ([1] Theorem 3.3) Let G be a graph with n vertices and m edges. Then bt(G) ≥
dm−n

n−3
e.

Proof The spine can hold at most n edges. Each page can hold at most n− 3 edges, because
each page is an outerplanar subgraph on n vertices (Theorem 3.1). Therefore, bt(G)(n−3)+n ≥ m,
and the result follows immediately. QED

From this theorem, Kainen and Bernahrt proved that the bookthickness of the complete graph
(Kn) is dn

2
e, as demonstrated in Figure 16, wherein each page is ‘full’, or maximally outerplanar ([1]

Theorem 3.4). Notice that we generally draw books as circular pages instead of three-dimensional
objects because they are simpler both to render and read.
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Figure 16: K8 has bookthickness four.

3.2 Improvements

Several of Kainen and Bernhart’s original theorems and conjectures were improved upon later. For
example, they proved that bt(Km,m) is less than or equal to m, which is a trivial result. When m is
greater than four, that bound can be improved to m− 1. An upper bound for Km,n, which follows
from Theorem 3.2, is bt(Km,n) ≥ dmn−m−n

m+n−3
e. These results were greatly improved in subsequent

papers. Muder, Weaver, and West[9] lowered the upper bound for bt(Km,n) in 1988 to min
{

2n+m
4

, n
}
.

Later, in 1997, Enomoto, Nakamigawa, and Ota [5] improved this bound further in for the case where
m = n to bt(Kn,n) ≤ b2n

3
c+ 1.

Another characteristic of bookthickness that has been studied since Kainen’s and Bernhart’s
first paper is the way in which genus relates to bookthickness. Bernhart and Kainen claimed that
a planar graph could have arbitrarily high bookthickness, but in 1984, Buss and Shor [2] showed
that all planar graphs could be embedded in at most 9 pages, which Heath [8] improved that same
year to 7 pages. Finally, in 1986, Mithalis Yannakakis [11] proved that all planar graphs can be
embedded in 4 pages, and provided a planar graph that required all four, proving his lower bound
to be optimal. A famous result of graph theory states that the faces of any planar graph can be
coloured with at most four colours so that no adjacent faces share a colour. Since any graph of
genus one requires at most seven colours, it was conjectured that the bookthickness of a toroidal
graph is at most seven. In 1997, T. Endo proved this conjecture [4]. This is especially interesting
because neither proof used the four colour or seven colour theorems in their constructions. The
numbers are the same, but apparently unrelated.
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3.3 The Möbius ladder again again

Once again, we will conclude this section by asking how it relates to the Möbius ladder. We know
that the Möbius ladder is not planar, so its bookthickness must be three or greater, from properties
(ii) and (iii) of Theorem 3.1. Moreover, if we take the ladder-like layout that Guy and Harary
designed and spread the vertices out so they look more like a circle, we can see a potentially helpful
σ for the vertices, pictured in Figure 17. In the even case, the straight vertical lines can all go on
one page together, along with the edge {r − 1, r}. The edge {0, 2r − 1} gets its own page, and the
remaining horizontal lines get a third. Therefore, the bookthickness of a Möbius ladder with an
even number of vertices is at most three.

Figure 17: Layout for a book embedding of a Möbius ladder with an even number of vertices.

Again stealing Guy and Harary’s layout, examine the case for a ladder with an odd number
of vertices. This time, the zig-zag edges get the first page, while {0, 2r} gets its own, and the
remaining horizontal zig-zag edges get a third. Therefore, the bookthickness of any Möbius ladder
is at most three, and since it is also at least three, we know that it is exactly three. It is gratifying
that Mn has a bookthickness that does not depend on n, since its genus does not either.
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Figure 18: Layout for a book embedding of a Möbius ladder with an odd number of vertices.

4 The Bookthickness of Nets

As a result of a University of Puget Sound Summer Research Grant for Science or Mathematics,
Summer of 2005, I was able to conduct original research into book embeddings. From this research,
I developed a family of graphs I call a net, which can be constructed from outerplanar pages of a
book or from the Möbius ladder. The interesting thing about nets is that half of them have an
explicit bookthickness while the bookthickness of the other half is known only to a range, which
is odd because the construction is the same in both cases. Let us begin by defining a net, and
explaining my motivation for developing them.

4.1 Net construction

Recall the book embedding of a complete graph, and how each page (except for the last, in the
case of an odd number of vertices) is triangulated. If we consider the spine as part of every page,
then each page is maximally outerplanar. An interesting exercise is to consider what happens when
we take these fully triangulated pages and make each pair of internal triangular faces into one
quadrilateral face instead. To put it another way, we remove the diagonal lines from the interior
of the page. We now have a graph constructed of layers of parallel lines and connected around the
edge by a Hamiltonian cycle. Because this looks like a mesh of parallel strands with a boundary, I
call the resulting graph a net.
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Figure 19: Making quadrilaterals out of outerplanar pages.

Although this is a simple geometric description of a net, a more mathematical one is desirable.
Recall the Möbius ladder, which had a Hamiltonian cycle and connected ‘opposite’ vertices. If
we instead think of the net as adding in every edge that is parallel to a central strut of a Möbius
ladder, we can redefine it. Notice that when the number of vertices is odd, a Möbius ladder connects
‘nearly opposite’ vertices, and so this construction will only work for even numbers of vertices. The
following definition is reminiscent of our precise definition of Möbius ladders and relies on vertex
labels. E(G) denotes the edge set of a graph G.

Definition 4.1 A net, N2r, is a graph on 2r vertices, labeled 0 to 2r − 1. All addition is modulo
2r.

Define

Pj =
{
{k + j, r − k + j}|1−

⌈
r

2

⌉
≤ k ≤

⌈
r

2

⌉
− 1

}
The edge set of N2r is

EN2r =
r−1⋃
j=0

Pj

⋃
{{v, v + 1}|0 ≤ 2r − 1}

Graphically, compare a page from K12 to P0 from N12:
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Figure 20: A page from a book embedding of K12 and P0 from N12.

Since we created N2r by stripping edges off of K2r and adding edges to M2r, the Möbius ladder
on 2r vertices, it is immediately obvious that bt(M2r) ≤ bt(N2r) ≤ bt(K2r), which means 3 ≤
bt(N2r) ≤ r. This range can be made arbitrarily large by increasing r, so we must find yet another
way of describing N2r. The following theorem claims that a net on 2r vertices, when r is even, is
similar to a pair of disjoint complete graphs on r vertices, joined together by a Hamiltonian cycle.
In the proof below, |E(G)| denotes the size of the edge set of a graph G.

Theorem 4.1 When r is even, and H is the Hamiltonian cycle 0, 1, 2, ..., 2r−1, then EN2r \EH =
E(2Kr).

Proof Assume N2r is labeled 0 through 2r − 1 and that all arithmetic is modulo 2r.
Examine some vertex j. In Pj, j is incident to the edge {j, r + j}. By hypothesis, r is even, so

j and r + j have the same parity. In Pj+i, j is incident to the edge {j, r + j + 2i}. Then for any Pi,
j is connected to a vertex whose label has the same parity, and so

EN2r − EH ⊂ E(2Kr).

where the even vertices and adjacent edges form one copy of Kr and the odd vertices and adjacent
edges form the other.

Now, N2r contains r − 1 edges for each Pj, of which their are r, and a further 2r edges in
the Hamiltonian cycle, so |EN2r| − |EH| = ((r − 1)r + 2r) − 2r = r2 − r when r is even, and

|E(2Kr)| = 2 r(r−1)
2

= r2 − r, the sets EN2r − EH and E(2Kr) have the same size. Therefore,
EN2r − EH = E(2Kr).

QED

When r is odd, however, the net on 2r vertices instead resembles the complete bipartite graph
Kr,r, as the following theorem claims.

Theorem 4.2 When r is odd, EN2r = EKr,r.

Proof Examine some vertex j. Again, all addition is modulo 2r. By the argument in the
previous proof, j is incident to any edge of the form {j, r + j + 2i} for i and integer. Since r is by
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hypothesis odd, j and r + j + 2i have different parity. Consequently, j is connected only to vertices
whose labels do not have the same parity as j. Therefore, the graph formed by

r−1⋃
j=0

Pj

is bipartite, where the bipartite sets are determined by the parity of the vertex labels, and so
EN2r ⊂ EKr,r.

If we disregard edges in Pj that are contained in the outer Hamiltonian cycle, N2r contains
r − 2 edges for each Pj, of which there are r, and 2r edges in the Hamiltonaian cycle. Therefore,
|EN2r| = (r− 2)r + 2r = r2 when r is odd, and |EKr,r| = r2, and so the sets EN2r and EKr,r have
the same size. Therefore, EN2r = EKr,r.

QED

4.2 The bookthickness of a net

It is interesting that such different graphs arise from the same construction, depending only on the
parity of r. It is especially so, since the bookthickness of Kn is known, while the bookthickness of
Kn,n is known only up to a range, as I have discussed. Consequently, the bookthickness of N2r is
easy to find when r is even.

Theorem 4.3 When r is even, bt(N2r) ≤ r
2

+ 1

Proof Arrange the vertices into an order σ so that all the evenly labelled vertices are in
ascending numerical order, followed by all of the oddly labelled vertices in descending numerical
order. Then the two copies of Kr have no overlapping edges between them. We can therefore embed
them both in the usual way for Kr, which requires r

2
pages (each of which has two copies of the

usual page for Kr). The Hamiltonian cycle can be embedded onto its own page, except for the edge
{2r − 1, 0}, which can be embedded onto any of the other pages.

QED

Figure 21 shows an example of a net being given the above embedding. The Hamiltonian cycle
is indicated by lines.
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Figure 21: N8 (top left) and its three page embedding.

This upper bound proves also to be the upper bound, resulting in the following theorem.

Theorem 4.4 bt(N2r) = r
2

+ 1 when r is even.

Proof We already know that when r is even, bt(N2r) ≤ r
2

+ 1. When r is even, there
are 2r edges in the Hamiltonian cycle of N2r and r − 1 edges in Pj for 1 ≤ j ≤ r. Therefore,
|E(N2r)| = 2r + r(r − 1) = r2 + r.

Suppose bt(N2r) ≤ r
2
. Then by theorem 3.2, since N2r has 2r vertices and r2 + r edges,

r2 + r = |E| ≤ r

2
(|V | − 3) + |V |

=
r

2
(2r − 3) + 2r

= r2 +
r

2

Which is a contradiction. Therefore, bt(N2r) = r
2

+ 1.
QED

When r is odd, bt(N2r) = bt(Kr,r), and consequently finding its bookthickness is much harder.

If we re-examine the lower bound found by Kainen and Bernhart, r2−2r
2r−3

, we will discover that the
lower bound on both the even and odd case is the same:
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Theorem 4.5 For r an odd integer greater than 3,
⌈

r2−2r
2r−3

⌉
=

⌊
r
2

⌋
+ 1.

Proof Since r is odd and greater than 3, r = 2k + 1 for some integer k greater than 1, so

⌈
r2 − 2r

2r − 3

⌉
=

⌈
4k2 + 4k + 1− (4k + 2)

4k + 2− 3

⌉

=

⌈
4k2 − 1

4k − 1

⌉

=

⌈
k +

k − 1

4k − 1

⌉

= k +

⌈
k − 1

4k − 1

⌉
= k + 1

because k − 1 ≤ 4k − 1 implies k−1
4k−1

≤ 1.

Similarly,
⌈

r
2

⌉
=

⌈
2k+1

2

⌉
= k + 1. Therefore,

⌈
k2−2k
2k−3

⌉
=

⌈
r
2

⌉
, and because r is odd,

⌈
r
2

⌉
=

⌊
r
2

⌋
+ 1.

QED

Despite being able to give N2r the same lower bound for all cases, we are still unable to give
it a definite bookthickness for the odd case. Doing so would mean we knew the bookthickness
for a specific type of complete bipartite graph, and may enable us to draw conclusions about the
bookthickness of other complete bipartite graphs.

5 Rotation Systems

We have discussed embedding graphs onto closed orientable and nonorientable surfaces, and how
to represent these surfaces by means of polygons with identified sides. For a torus or a Klein
bottle, this polygonal representation is simple, but for higher genus and higher crosscap surfaces it
can become unruly. In this section, we will discuss another method of drawing graphs embedded
onto particular surfaces that does not become unruly so quickly. Moreover, it can be succinctly
represented in a tabular form known as a rotation system.

5.1 A new drawing method

Recall from section 2.2 that in order for a graph to be properly embedded into a surface it must be
a cellular embedding. That is, each face must be homeomorphic to a disk. In Figure 22, we show
K5 embedded onto a Klein bottle, using the polygon representation. Next to it, we show the same
embedding but without explicitly representing the surface, making sure that the edges adjacent to
each vertex are in the same order that they were on the Klein bottle. The edge that passes through
the nonorientable part of the Klein bottle gets an x on it to indicate that it is ‘twisted’, and we
call it a ‘type-1 edge’. There is enough information in the second picture to deduce what surface is
being used, but before we learn how to make that deduction, we must state some theorems.
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Figure 22: Two ways to draw the same embedding of K5 onto the Klein bottle.

Theorem 5.1 ([6] Theorem 3.3.3) (The Euler characteristic for orientable surfaces) Let n be
the number of vertices in a graph G, and m be the number of edges. Then, if G has a cellular
embedding with f faces onto an orientable surface Sg, n−m + f = 2− 2g.

Theorem 5.2 ([6] Theorem 3.3.4) (The Euler characteristic for nonorientable surfaces) Let n
be the number of vertices in a graph G, and m be the number of edges. Then, if G has a cellular
embedding with f faces onto a nonorientable surface Nk, n−m + f = 2− k.

These two theorems follow from the Euler characteristic for the sphere, which was originally
stated by Euler in 1750 as a formula relating the numbers of vertices, edges, and faces of a polyhe-
dron, namely n − m + f = 2. Recall that the genus of a sphere is zero. We shall not go into the
proofs here, although they can be found in [6]. This means that if we know how many edges and
vertices a graph G has, and how many faces an embedding of it into an unknown closed surface
has, we can determine what that surface is. Returning to our new drawing method from above, all
we need to do in order to discover what surface G is embedded onto is find out how many faces are
contained in the embedding.

Consider once again the polygon representation of K5 embedded onto the Klein bottle. We can
trace out the faces, as shown below, by following a walk around the boundary of the face. Notice
that when we reach a vertex, we move on from the edge we were following to the edge next to
it. There is no reason that we could not do this on the alternate representation, because we were
careful to keep the edges in the same order on each vertex. Figure 23 also shows the same face
tracing on the alternate representation.

Figure 23: Faces traced out on the K5 embedding onto the Klein bottle.

19



We can formalize this process into the Face Tracing Algorithm, once we create a tabular
representation of our new drawing, called a rotation system. First, list each vertex by name.
Second, for each vertex write the edge adjacent to it in clockwise order. If an edge is type-1, add a
superscripted ‘1’ above its name. Alternately, instead of naming each edge, we can write the name
of the other vertex adjoining that edge. For example, the embedding of K5 onto the Klein bottle
from Fig 5.1 can be represented by the following rotation system:

a. bedc
b. d1cea
c. adeb
d. cb1ae
e. bcda
We can now use the face tracing algorithm outlined by Gross and Tucker to determine a face by

tracing out its boudnary [6]:
1. Choose an initial verex v0 and an initial edge e1 incident on v0. Let v1 denote the other

endpoint of e1.
2. If the number of type-1 edges traversed so far is even, let v2 denote the vertex in the rotation

system at v1 that comes after v0. If the number of type-1 edges traversed so far is odd, let v2 denote
the vertex in the rotation system at v1 that comes before v0. Let e2 denote the edge {v1, v2}.

3. Continue in this manner until edge en such that the next two edges in the boundary would
be e1 and e2.

If we apply the face tracing algorithm to the rotation system for K5 above, choosing v0 to be a and
e1 to be {a, c}, we get a walk that traverses the following vertices in order: a, c, d, b, a, c, b, d, a, c, d.
Notice that we passed through type-1 edges twice, and so each time reversed the direction in which
we chose vertices.

5.2 Intervals of genus and crosscap number

Now that we have a tabular representation of a graph G embedded into a particular surface, we can
prove that the genus and crosscap numbers of surfaces into which some graph can be embedded
comes in an interval of integers. First, define the embeddings S and T of a graph G onto surfaces
to be adjacent if there is an edge e in G such that deleting e from both embeddings makes them
identical. In other words, S and T differ by the placement of only one edge. Using our rotation
systems, two embeddings are adjacent if deleting e from their rotation systems results in identical
rotation systems. Notice that the number of faces in embedding S is at most one more or less than
the number of faces in the embedding S− e. Therefore, S has at most two more or fewer faces than
T , which means their Euler characteristics differ by at most two, and so if they are both orientable
surfaces they either have the same genus or the genus of one is one less than the genus of the other.

Using this information, Richard A. Duke proved the next theorem.

Theorem 5.3 ([3] Orientable Interpolation Theorem) The genus range of a graph G is an
interval of continuous integers

Proof ([6], Theorem 3.4.1)
If L1 and L2 are two rotation systems of a graph G, we can obtain L2 from L1 by permuting the

entries for various vertices. Every such permutation can be written as a sequence of permutations
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that change only one edge in the whole rotation system. These consecutive rotation systems each
represent adjacent cellular embeddings of G. Rotation systems that are adjacent, consequently,
have genera that differ by at most one, giving us our conclusion.

QED

Similarly, the crosscap range of a graph is an unbroken interval of integers, which was proved by
Stahl in 1978 [10]. This proof relies on more complicated techniques, which are beyond the scope
of this paper.

6 Band Decompositions

We saw how we can encode an embedding onto a surface in a drawing of the graph using rotation
systems. Now, we will go the other way around — taking a drawing of a graph, we will create
a surface from it. This is similar to the spirit of rotation systems, but it is more visual and less
tabular.

6.1 Making a band decomposition

Let us consider a drawing of K5 again. A 1-band is a topological space homeomorphic to the
interval [0, 1] × [0, 1]. In other words, it resembles a rectangle of some sort. We will call the arcs
[0, 1] × {j}, for j = 0, 1, the ‘ends’ of the band, and the arcs j × [0, 1] the ‘edges’ of the band. A
0-band and a 2-band are topological spaces homeomorphic to the unit disk. We can then define
a band decomposition of a surface.

Definition 6.1 ([6]) A band decomposition of a surface S is a collection of 0-bands, 1-bands, and
2-bands such that

(i) different bands intersect only along arcs in their boundaries.
(ii) the union of all the bands is S, each end of every 1-band is contained in the boundary of

a 0-band.
(iii) each edge of every 1-band is contained in the boundary of a 2-band.
(iv) the 0-bands and 2-bands are pairwise disjoint.

To state it more simply, the surface is composed of strips and two sets of disks so that every
strip has its ‘small’ ends connected to disks from one set and its ‘long’ edges connected to disks
from the other set. Additionally, no two disks from the same set intersect, and there are no overlaps
between strips and disks except at their boundaries. Figure 24 is an example of a portion of a band
decomposition of a surface. Notice that one edge has a twist in it–this is analogous to the type-1
edges we saw in the previous section. In general, we do not draw in the 2-bands, but let it be
assumed that the gaps left by 0-bands and 1-bands are filled with 2-bands.
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Figure 24: A portion of a band decomposition.

We can also think of this band-decomposition method as simply giving a drawn graph thickness.
Each 1-band is a thickened edge, each 0-band a thickened vertex, and 2-bands are faces. In that
way, the band decomposition forms a surface by ‘filling in’ the space between edges and vertices.
Just as the rotation system and face tracing algorithm let us determine what surface the graph had
been embedded onto, the band-decomposition in fact forms the surface.

6.2 Orientability

Now, let us consider the orientability of a band decomposition. We will assign each band of a band
decomposition an orientation: clockwise or counter-clockwise. If two bands share a boundary, then
on either side of the boundary the orientation must be going in the opposite direction in order for the
surface to be considered ‘orientable’. For example, if we have a 0-band with clockwise orientation
and a 1-band whose boundary intersects that of the 0-band, and the 1-band is not twisted, we should
give the 1-band a clockwise orientation as well. See Figure 25 below for examples. Now, take a band
decomposition and assign every 0-band some orientation. A 1-band is called ‘orientation preserving’
if it is possible to assign it an orientation consistent with the orientation on the adjacent 0-bands.
An edge is type-0 if its corresponding 1-band is orientation preserving, and type-1 else.

1-band preserves orientation 1-band fails to preserve orientation

Figure 25: Orientation preserving and non-orientation preserving 1-bands.

Now, the surface created out of a graph by a band decomposition will be nonorientable if and
only if there is a cycle in the associated graph that has an odd number of type-1 edges in it. This is
consistent with our explanation in Section 2 of nonorientable surfaces, because such a cycle would

22



form a Möbius band if we were to cut it out of the surface. If the cycle had an even number of
type-1 edges, then its band decomposition would have an even number of twists in it. Consequently,
the band could be ‘untwisted’. If it has an odd number of twists in it, however, then we cannot
untwist it completely. Think of a band that has two twists in it and convince yourself that it is
functionally the same as a band with no twists.

This gives us a fairly simple algorithm for determining the orientability of a band-decomposition
of a graph. First, define a tree to be a graph containing no cycles of any size. A spanning graph
S of a graph G is a subgraph that contains every vertex in G such that for any two vertices in G
there exists a path in S from one to the other. A spanning tree is simply a spanning graph that
is also a tree. Now we can use the orientability algorithm presented in [6]:

1. Choose a spanning tree T from the graph G whose band decomposition you are examining.
2. Next, choose a vertex u from T and give the corresponding 0-band an orientation.
3. Now, for every vertex connected to u by an edge in T , choose an orientation such that the

connecting 1-bands are orientation preserving.
4. Continue this process until every vertex has been assigned an orientation. The spanning tree

will consist solely of type-0 edges.
A graph G is a tree if and only if adding any edge to T will form a cycle. Consequently, if

there is an edge in G but not T that will be type-1 from the orientations assigned to the 0-bands
corresponding to its vertices, that edge will form a type-1 cycle in G.

5. So the surface is nonorientable if and only if some edge in G, but not in T , is type-1.
Here is a step-by-step diagram of how we would apply this algorithm to a graph. The numerical

labels correspond to the steps in the algorithm with the same labels.
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Figure 26: The face-tracing algorithm

7 Conclusion

We have now examined several surfaces onto which graphs can be embedded, and a few ways such
embeddings can be represented. There are also several questions still to be answered about nets
and their bookthickness. A possible subject for further research could be the bookthickness of
a graph’s complement, since the complement of N2r is closely related to N2r+2, and a possible
inductive argument could be formed. The bookthickness of a graph’s complement has also not yet
been studied and would be worth pursuing for its own sake.

It may also be possible to generalise books in the way that the torus and the Klein bottle were
generalised into Sg and Nk. One way of doing this could be to recognise that a book can be drawn
as a set of nested spheres with their equators identified. Nesting tori together and identifying them
at a boundary — perhaps a noncontractable curve around the hole, or a curve that cuts through
both the outside and the hole — could produce a higher-genus book. It is less clear how to cut a
two-holed torus, or one of higher genus still. We could also generalise a book by noting that each
page is a rectangle and identifying edges of that rectangle so that each page is a Klein bottle or a
torus.
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